
Depth first Search
-

- Graph G= Cv, E) directed or undirected

- Adjacency list representation

-

Goal : Explore every vertex and every edge .

DFS- visit (u) .
.

Called once/vertexDfs (G)
for each u e V

color [u] ← Gray
lime ← time -11

do color [u] ← White day ← time
. . . - -

. . .
.
- -

(Discovered)
time← 0

for each u e v
for each v E adj [u]

do if color [u] = white
do if color Ev] a white) edges of u

then DFS- visit (v) explored
then DFS- visit (u)

color [u] ← Black

time ← time +1

f-[u] ← time
. - -- - - - - - - - (finished)

Time = OH)tQ(§ladjCul)= OHH ACE) = ACUTE)

•
Be careful . DFS- ist is called once per vertex .

•
The running time of Dfs- vis t Cu) is OG) since it has to

process edges of U -

• But total running time is not OUT !

The processing of vertex U can be charged to edges .

Each edge charged once (or twice if undirected)

Rest of code charged to u -

OG) + OLE) aggregate analysis .

Examp

④-

*.

:c:
O O O

vertex u is gray from day to flu]

gray vertices ⇒ stack of recursive calls

(started but not finished)

④-

"i
(un)

Tree edge : v encountered from u for first time . Gray → white

day < das s far] a flu]

Back edge : From deseudent to ancestor in the tree . Gray → Gray
das s day < flu] s far]

Forward edge : from ancestor to descenteat in the tree Gray→ Black

(same as tree edge)

Cross edge : All others . Gray → Black

das sf El ed [u] Sfa]

④→ c-④

:
O O O

④→ c-④

on

:
O O O

Useful facts :

-

G is undirected ⇒ Dfs produces only Tree Q Back edges .

O ancestor O

F ?(IT IT
0 0

IT TILT
0 descendent O_O

C ?

Assume 7 Forward edge One of the two vertices

.

But F? must actually be B must have been discovered

because we must finish processing first , making C? actually
bottom vortex before resuming top T. In fact labelling

TNT can't be right

O

÷:*
9

should be T

Undirected G is acyclic ⇒ Dfs yields no Back edges

A-cyclic ⇒ No Back edge since back edge
means cycle

Nb Back edge ⇒ only T edges (from before)
-50 graph is forest .

Check for cycles in undirected graph in OG) time

Run DFS

- if encounter a B edge ⇒ F cycles
- No need to explore more than WI edges

What about directed graphs? We can still claim :

Directed G is acyclic⇒ Dfs yields no Back edges
• acyclic ⇒ (as before) No back edges

since Back edge means cycle -

• No Baek edge ⇒ no cycle .

Proof by contradiction : Assume 7 cycle and let v
have smallest day on cycle .

②
→On
,

all vertices on cycle are White

M Y when v discovered ⇒ will

• .

°

visit all before returning from

dO¥¥e?hm¥¥ DFS- visit Cvl . Therefore @Nj
is Back edge , Contradiction .

TopologicolSorting_ofDAG
order vertices of DAG such that

@N) E E ⇒ UL V

e-g . order tasks that depend on each others .

Example : ar→ ←

,y
¥

I←t ¥*

→e
→ -

un sait

Topological- sort (G)
run DFS OCVTE) time

when vertex finished , output it

claim : Vertices output in reverse topological order
-

(un) E E ⇒ Ffv] s flu]

Proof : When (UN) is explored , u is gray

v gray : (u ,y back edge , contradiction

v White : v discovered
,
V has to finish before

coming back to U , so far] L FEU]

V black : V already finished , so f-[v] L flu]

fateful
"

•→•

V

un V mu U-

-

Note: Single source shortest path can be found in
-

linear time in DAGS .

- Topological sort

- Relax edges of vertices in topological order .

