Depth First Search

- Graph $G=(V, E)$ directed or undirected
- Adjacency list representation
- Goal: Explore every vertex and every edge.

DPs (G)
for each $u \in V$
do color $[u] \leftarrow$ white
time $\leftarrow 0$
for each $u \in V$ do if color $[u]=$ white then DFS-visit (u)

DFS-visit (u) color $[u] \leftarrow$ Gray
time \leftarrow time +1
$d[u] \leftarrow$ time (Discovered)
$\left.\begin{array}{rl}\text { for each } v \in \text { adj }[u] \\ & \text { do if color }[v]=\text { white } \\ & \text { then DFS -visit }(v)\end{array}\right\} \begin{aligned} & \text { edges of } u \\ & \text { explored }\end{aligned}$
color $[u] \leftarrow$ Black
time \leftarrow time +1
$f[u] \leftarrow$ time
........... (Finished)

$$
\text { Time }=\theta(v)+\theta\left(\sum_{u} \mid a d j[u]\right)=\theta(v)+\theta(E)=\theta(V+E)
$$

- Be careful. DFs-vist is called once per vatex.
- The running time of DPS-vist (u) is $O(v)$ since it has to process edges of u.
- But total running time is not $O\left(V^{2}\right)$!

The processing of vertex u can be charged to edges. Each edge charged once (or twice if undirected) Rest of code charged to u.
$O(V)+O(E)$ aggregate analysis.

Example:

vertex u is gray from $d[u]$ bo $f[u]$ gray vertices \Rightarrow stack of recursive calls (started but not finished)

Tree edge: v encountered from u for first time. Gray \rightarrow white

$$
d[u]<d[v]<f[v]<f[u]
$$

Back edge: From desendent to ancestor in the tree. Gray \rightarrow Gray

$$
d[v]<d[u]<f[u]<f[v]
$$

Forward edge: From ancestor to descentent in the tree Gray \rightarrow Black (same as tree edge)
Cross edge: All others. Gray \rightarrow Black

$$
d[v]<f[v]<d[u]<f[u]
$$

Useful facts :
G is undirected \Rightarrow Dfs produces only Tree \& Back edges.

Assume \exists Forward edge
But F? must actually be B because we must finish processing bottom vertex before resuming top

One of the two vertices must have been dis avered first, making C? actually
T. In fact labelling
T / \backslash can't be right

should be T

Undirected G is acyclic \Longleftrightarrow DFs yields no Back edges
Acyclic \Rightarrow No Back edge since back edge means cycle
No Back edge \Rightarrow only T edges (from before) so graph is forest.

Check for cycles in undirected graph in $O(v)$ time RUn DFS

- if encounter a B edge $\Rightarrow \exists$ cycles
- No need to explore more than $|V|$ edges

What about directed graphs? We can still claim:
Directed G is acyclic \Longleftrightarrow DPs yields no Back edges

- acyclic \Rightarrow (as before) No back edges
since back edge means cycle.
- No Back edge \Rightarrow no cycle.

Proof by contradiction: Assume \exists cycle and let V have smallest $d[v]$ on cycle.

all vertices on cycle are white when v dis covered \Rightarrow will visit all before returning from DFS Visit (v). There fore (u, v) 7 determine if cyclic or not is Back edge, Contradiction.

Topological Sorting of DAG
Order vertices of DAG such that

$$
(u, v) \in E \Rightarrow u \prec v
$$

egg. order tasks that depend on each others.
Example:

watch shirst) (beet

Topological_Sort (G)
run DFS
$O(V+E)$ time
when vertex finished, output it

Claim: Vertices output in reverse bo pological order

$$
(u, v) \in E \Rightarrow f[v]<f[u]
$$

Proof: When (u,v) is explored, u is gray
\checkmark gray: (u, v) back edge, contradiction
v White: v discovered, v has to finish before coming back to u, so $f[v]<f[u]$
v black: v already finished, so $f[v]<f[u]$

mn

Note: Single source shortest path can be found in linear time in DAGs.

- Topological sort
- Relax edges of vertices in to oological order.

