
All
-pairs shortest paths
-

• Directed graph G-= CUE) , weight function w : E → IR , Ivf n

•
Goal : Create nxn matrix of shortest path distances scij)

• Bellman - Ford : Run once per vertex as source : O(VE),
this is 0 (n't) on dense graph (E=D (H)) .

•
Consider the adjacency matrix representation .

- nxn matrix W where Wij = W Ci , j)

- assume Wii = o (No negative weight cycle ⇒ that's shortest

distance from i to i)

Dynamic Programming formulations :
-

Let D ijm) = weight of shortest path from i to j that uses
at most m edges (length of path frm)

Then
Dijk' = { ooo

"

j
u

How can we write Dijlm) ?

Ok
i O ⑥" I) D .

. D .

✓
-
⇒Oj
" ""÷÷÷÷÷÷÷

for m ← 1 to n - I

do for i ← 1 to n

do for j ← 1 to n

do Dijcm'←
⇐ Inning ID

item
-"
t wCK,j))

return Dem)

D ← Dco)

to
:O : %:*, Y!!÷D
for i ← 1 to n

do for j ← 1 to n

I
\ doe
: :

was,
D ← D

'

sci,j)= Dijk - " = Dig = Dijk"! . . . (no so weight cycles)
Time : Ocn 4)

Space : any

j

Matsixmultiplication if¥)=¥T¥H
(= Ax B

,
nxn matrices

Cij = ¥ Air . Brj This can be done in Ocn3) time

Replace : + → min

• → +

gives: Cij = main (Air + Bkj] (C= A "

x
" B)

so Dlm)
=
Dlm -""x " W

D
'"
= 1%0 .

.

.?o) is identity for "

x
"

.

D'll = D
" '
w =

W

D" = Dl" W = W
'

:
'

Dd -D
=
Dd -TW

= W
"- I

So we have ① Cn)
"

multiplications
"

, each

requires Q Cri) time ⇒ ⑦ (n't) time .

Not better than before , but we can do

matrix multiplication using repeated squaring !

Compute :

W
, W
'

, W
4
,
Woo
,

,
W
249 (n - 'M

-

① (Ign) squaring s

(ok to overshoot since product does not change
after converging)

Time : O (n' log n) .

floyd-warshall-n.tt faster DP .

let Cijm) = weight of shortest path from i to j
with intermediate vertices in { 1,2, . . .,m}

i O
-so→0→o→o→oj
frm frm frm frm

(n)
Then sci,D= Cij . City?=Wij (no intermediate vertices)
How can we write Cijm) ? (shortest path either includes m or doesn't)

in

e. o
him;m. .

-9*-0;
Gim! minfc.im-D, g.fm?,cmym.d)

Floyd - Warshaw b'[7jFfor m ← I to n can be dropped !
do for i ← 1 to n Cnn)here Cij is

do for j ← 1 toy implicitly cijlm - 'Ido if Cij > Cim + Cmj
then Cij ← Cim + Cmj

The advantage is that we don't check all intermediate

vertices as before .
Time is ① (ns) .

Space is O Cny

Section 25.3 : Johnson 's alg . 0(V%gVt VE)

Floyd -Warshall for Transitive Closure :
-

The transitive closure G
't

of G :

(i,j) E G
't

iff 3 path from i to j in G-

Solution . Use adjacency matrix with elements in { 0,13

(no need for actual weight)

• Use Floyd -Wars hall alg . replacing
min → OR

+ → AND

Cij ← Cij OR (Cim AND Cmj)

Linear programming with constraints of the form

Xj - Xi f bk

t : find X
, , Xz , Xz such that :

Zi - Nz E 3

Nz - Nz f -2

KI - Nz & 2

Solution : N
,
=3
, 212=0, Xs

= 2

Goal : find Xi that satisfy constraint or determine that
there is no solution

.

Construct graph : Add vertex for each of the n variables
.

Add edge for each of the m constraints
.

bk

Kai - Zi t bk

• Negative weight cycle ⇒ No solution
.

V. yw" suppose solution : XX - * f Wiz
(J

Va Nz - Ha EW23

Vk
.

. . .
.

↳23 !

KK
- Nk

-i f Nk- l K
& ,
- MK f WKI
-

O f negative (contradiction)
•
No negative weight cycle ⇒ Solution exists

Vo ki = 8(Vo
, Vi) is a solution .

Proof : Triangular Inequality :

8 (Vo , Vj) f 8 (Vo,Vi) + wcisj)

Nj - ki ← wciij) .

Bellman - Ford can be used and its running time would be

0 (VE) where V= htt

E = ht m

so 0 Cnn) (ntm) .- O (n't nm)

