All_pairs shortest paths

- Directed graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R},|V|=n$
- Goal: Create $n \times n$ matix of shortest path distances $\delta(i, j)$
- Bellman-ford: Run once per vertex as source: $O\left(V^{2} E\right)$, this is $O\left(n^{4}\right)$ on dense graph $\left(E=\Omega\left(v^{2}\right)\right)$.
- Consider the adjacency matrix representation.
- $n \times n$ matrix W where $W_{i j}=W(i, j)$
- assume $W_{i i}=0$ (No negative weight cycle \Rightarrow that's shortest distance from i to i)

Dynamic Programming formulations:
Let $\left.D_{i j}{ }^{\left({ }^{(m)}\right.}\right)=$ weight of shortest path from i to j that uses at most m edges (length of path $\leqslant m$)
Then $D_{i j}^{(0)}=\left\{\begin{array}{cc}0 & i=j \\ \infty & i \neq j\end{array}\right.$ How can we write $D_{i j}{ }^{(m)}$?

$$
D_{i j}^{(m)}=\min _{k}^{(m)}[\underbrace{D_{i k}^{(m-1)}+w(k, j)}_{\begin{array}{c}
\text { when } k=j \\
\text { this is } D_{i j-1)}^{(m)}
\end{array}}]
$$

for $m \leftarrow 1$ to $n-1$
do for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n

$$
\operatorname{do}_{0 n} D_{i j}^{(m)} \leftarrow \min _{k=1 \ldots n}\left[D_{i k}^{(m-1)}+w(k, j)\right]
$$

return $D^{(m)}$
$D \leftarrow D^{(0)}$
for $m \leftarrow 1$ to $n-1$

$$
\operatorname{do} D^{\prime} \leftarrow \infty \quad\left(\text { or } D^{\prime} \leftarrow D\right)
$$

for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n do for $k \leftarrow 1$ to n do if $D_{i j}^{\prime}>D_{i k}+w(k, j)$
$D \leftarrow D^{\prime}$

Using D^{\prime} for the "new"
 then $D_{i j}^{\prime} \longleftarrow D_{i k}+w(k, j)$

$$
\delta(i, j)=D_{i j}{ }^{(n-1)}=D_{i j}{ }^{(n)}=D_{i j}{ }^{(n+1)}=\ldots \quad \text { (no <0 weight cycles) }
$$

Time: $O\left(n^{4}\right)$
Space: $O\left(n^{2}\right)$

Matrix multiplication
$C=A_{\times B} B, n \times n$ matrices

$c_{i j}=\sum_{k} A_{i k} \cdot B_{k j} \quad$ This can be done in $O\left(n^{3}\right)$ time
Replace: $+\rightarrow$ min

$$
\cdot \quad \rightarrow+
$$

gives: $C_{i j}=\min _{k}\left[A_{i k}+B_{k j}\right] \quad(C=A " x " B)$
So $D^{(m)}=D^{(m-1)} x x^{\prime} W$
$D^{(0)}=\left[\begin{array}{ccc}0 & 0 & \infty \\ 0 & \cdots & \\ \infty & \ddots & 0\end{array}\right]$ is identity for " x ".

$$
\begin{aligned}
& D^{(1)}=D^{(0)} W=W \\
& D^{(2)}=D^{(1)} W=W^{2} \\
& \vdots \\
& D^{(n-1)}=D^{(n-2)} W=W^{n-1}
\end{aligned}
$$

So we have $\theta(n)$ "multiplications", each requires $\theta\left(n^{3}\right)$ time $\Rightarrow \theta\left(n^{4}\right)$ time. Not better than before, but we can do matrix multiplication using repeated squaring!

Compute:

$$
W, W^{2}, W^{4}, W^{8}, \ldots, W^{\lceil\lceil\lg (n-1)\rceil}
$$

$\theta(\lg n)$ squaring
(ok to overshoot since product does not change after converging)

Time: $\theta\left(n^{3} \log n\right)$.

Floyd-Warshall:A faster DP.
let $C_{i j}^{(m)}=$ weight of shortest path from i to j with intermediate vertices in $\{1,2, \ldots, m\}$

Then $\delta(i, j)=C_{i j}^{(n)} . \quad C_{i j}^{(0)}=W_{i j}$ (n ointermediate vertices)
How can we write $C_{i j}^{(m)}$? (shortest path either incudes m or doesn't)

Floyd- Warshall
Not trivial but superscripts
for $m \leftarrow 1$ to n
do for $i \leftarrow 1$ to n can be dropped! do for $j \leftarrow 1$ to n do if $c_{i j}>c_{i m}+c_{m j}$ implicitly $c_{i j}{ }^{(m-1)}$ then $c_{i j} \leftarrow c_{i m}+c_{m j}$

The advantage is that we don't check all intermediate vertices as before. Time is $\theta\left(n^{3}\right)$.

Space is $\theta\left(n^{2}\right)$

Section 25.3: Johnson's alg. $O\left(V^{2} \log V+V E\right)$

Floyd-Warshall for Transitive Closure:
The transitive closure G^{*} of G :
$(i, j) \in G^{*}$ iff \exists path from i to j in G
Solution: Use adjacency matix with elements in $\{0,1\}$
(no need for actual weight)

- Use Floyd-Warshall alg. replacing

$$
\begin{aligned}
\min & \longrightarrow \text { OR } \\
+ & \longrightarrow \text { AND } \\
C_{i j} & \left.\sim C_{i j} \text { OR (C } C_{i m} \text { AND } C_{m j}\right)
\end{aligned}
$$

Linear programming with constraints of the form

$$
x_{j}-x_{i} \leqslant b_{k}
$$

Example: Find x_{1}, x_{2}, x_{3} such that:

$$
\begin{aligned}
& x_{1}-x_{2} \leqslant 3 \\
& x_{2}-x_{3} \leqslant-2 \\
& x_{1}-x_{3} \leqslant 2
\end{aligned}
$$

Solution: $x_{1}=3, x_{2}=0, x_{3}=2$
Goal: Find x_{i} that satisfy constraint or determine that there is no solution.

Construct graph: Add vertex for each of the n variables. Add edge for each of the m constraints.

$$
v_{i} v_{k} \quad x_{j}-x_{i} \leqslant b_{k}
$$

- Negative weight cycle \Rightarrow No solution.

$$
\begin{array}{ll}
v_{1} v_{v_{12}}^{w_{12}} & \text { Suppose solution: } \\
v_{k} \ldots x_{w_{23}} & x_{2}-x_{1} \leqslant w_{12} \\
& x_{3}-x_{2} \leqslant w_{23} \\
\vdots
\end{array}
$$

- No negative weight cycle \Rightarrow Solution exists

Proof: Triangular Inequality:

$$
\begin{gathered}
\delta\left(v_{0}, v_{j}\right) \leqslant \delta\left(v_{0}, v_{i}\right)+w(i, j) \\
x_{j}-x_{i} \leqslant w(i, j)
\end{gathered}
$$

Bellman-ford can be used and its running tame would be
$O(V E)$ where $V=n+1$

$$
E=n+m
$$

So $O(n+1)(n+m)=O\left(n^{2}+n_{m}\right)$

