
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Semiglobal Alignment

\qquad

- We score alignments ignoring start and end gaps. \qquad
- Start gaps occur before the first character in a sequence.
- End gaps occur after the last character in a sequence

> CAGCA-CTTGGATTCTCGG
> ---CAGCGTGG-----
> start gaps end gaps
\qquad

- Score $=+1(6)-1(1)-2(1)-11(0)=3$ \qquad
- This is not the best global alignment between the two sequences (-12 for global optimal against -19 if scored globally) \qquad
\qquad

Why this variation?

- Maybe it is OK to have unlimited number
\qquad of gaps at the ends, e.g. detecting significant overlap
- Different possible overlaps

Modifying Needleman-Wunsch

- Ignoring start gaps
$-A(i, 0)=0$
$-A(0, f)=0$ Why?

- Ignoring end gaps

\qquad
\qquad
\qquad

Explanation

\qquad

Initializing the first row and first column to zeros \qquad eliminates any starting gap penalty.
\qquad
An alignment with end gaps in x aligns x with a prefix of y.
...xxxxxxx----
...уууyyyyyyyy \qquad
Therefore, the $\max _{i} A(m, j)$ (last row) gives the maximum score for such an alignment. \qquad

- Same reasoning for y. \qquad

Generalization

\qquad

Generalization	
Place where gaps are not penalized Action Start of x End of x Start of y End of y Initialize first row to zeros Look for max in last row Initialize first column to zeros Look for max in last column	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Local Alignments?

- Comparative genomics: \qquad
- Genes are shuffled in different genomes
- Finding preserved sequences
- Different proteins have preserved repetitive \qquad patterns
\qquad
\qquad

Greedy Way

\qquad
\qquad

- $O\left(m^{2}\right)$ substrings of x
- $O\left(n^{2}\right)$ substrings of y
- $O\left(m^{3} n^{3}\right)$ algorithm using \qquad Needleman-Wunsch on each pair \qquad Saad Mneimnen

Facts

\qquad

- The two substrings with the best score must be \qquad matched at both ends (why?)
- The score of the best local alignment has to be positive (why?)
- More generally: The best local alignment \qquad cannot start or end with an alignment with negative score (why?) \qquad
\qquad

Modifying Needleman-Wunsch

- Same as before, but \qquad
- $A(i, j)$ is now best score for aligning a suffix of $x_{1} \ldots x_{i}$ and a suffix of $y_{1} \ldots y_{i}$
- Is the update rule still valid? Almost...
- Negative entries in the A matrix are meaningless if $A(i, j)<0$, replace it with 0
i.e, starting over from $A(i+1, j+1), A(i, j+1)$, and $A(i+1, j)$.

\qquad
\qquad
\qquad
\qquad
\qquad
The best local alignment cannot start with a suffix of $x_{1} \ldots x_{i}$ aligned with a suffix of $y_{1} . . y_{j}$. \qquad Saad Mneimnen \qquad

Smith-Waterman

- Initialization \qquad
$-A(0, \mathrm{~J})=0$
$-A(i, 0)=0$ \qquad
- Main iteration
$A(i, j)=\max$
$\left\{\begin{array}{l}A(i-1, j-1)+s\left(\mathrm{x}_{i}, \mathrm{y}_{j}\right) \\ A(i-1, j)-d \\ \mathrm{~A}(i, j-1)-d \\ 0\end{array}\right.$ \qquad
\qquad
- Termination
$A^{O P T}=\max _{i, j} A(i, j)$ \qquad
\qquad

Example

		G	C	G	T	C
	0	0	0	0	0	0
G	0	1	0	1	0	0
G	0	1	0	1	0	0
n						
fogative to 0 by						
the update						

\qquad
\qquad
\qquad
\qquad

Trace back from $\max _{i, j} A(i, j)$ until you hit a 0 \qquad
\qquad

Saving Space (for Needleman-Wunsch)

- These basic algorithms require $O(m n)$ time \qquad and $O(m n)$ space.
- No algorithm is known that uses asymptotically less time and has the same \qquad generality.
- It is possible to improve space complexity from $O(m n)$ to $O(m+n)$. \qquad Saad Mneimnen

First Attempt

- We only need to keep one row of the matrix A at any given time.

- Therefore, we only need $O(m+n)$ space to compute the optimal score
- What about producing the alignment itself?

Saving Space (cont.)

- We know how to compute the optimal score in \qquad linear space.
- In fact, we can compute the best scores between a \qquad given prefix of x and all prefixes of y (How?)
- The hard part is to obtain the optimal alignment itself in linear space
- the previous algorithms depend on the whole matrix to do this job.
- Use a Divide and Conquer to remove this difficulty. \qquad

Saad Mneimnen - \qquad

Key Idea

\qquad

- Consider x_{i} in an optimal alignment of x and y \qquad
$-x_{i}$ is aligned with y_{j} for $1 \leq j \leq n \quad$ OR
$-x_{i}$ is aligned to a gap between y_{j} and y_{j+1} for $0 \leq j \leq n$ \qquad
\qquad
- $\mathrm{y}_{1} \cdot \dot{y}_{2} \cdot \dot{\mathrm{y}}_{3} \cdot \dot{y}_{4} \cdot \dot{\mathrm{y}}_{5} \cdot \ldots \cdot \dot{y}_{\mathrm{n}}$.
$2 n+1$ possibilities
\qquad
\qquad
\qquad

Key Idea (cont.)

Given i, guess what is matched to x_{i} in an optimal alignment by finding the best alignments that match x_{i} to each of the $2 n+1$ positions
OPT $\binom{x_{1} \cdots x_{i-1}}{y_{1} \cdots y_{j-1}}$
x_{i}
$y_{j}$$\quad$ OPT $\binom{x_{i+1} \cdot x_{m}}{y_{j+1} \cdots y_{n}}$
OPT $\binom{x_{1} \cdots x_{i-1}}{y_{1} \cdots y_{j}} \quad \begin{array}{ll}x_{i} & \text { OPT }\end{array}\binom{x_{i+1} \cdots x_{m}}{y_{j+1} \cdots y_{n}}$
\qquad
\qquad
\qquad

Key Idea (cont.)
Compute the best scores between

- $x_{1} . . . x_{m / 2-1}$ and all prefixes of y
- $x_{m / 2+1} \ldots x_{m}$ and all suffixes of y (the reverse)

\qquad
\qquad
\qquad
- Find k that maximizes

$$
\left\{\begin{array}{l}
A(m / 2-1, k-1)+s\left(x_{m / 2}, y_{k}\right)+B(m / 2+1, n-k \\
A(m / 2-1, k)+s\left(x_{m / 2},-\right)+B(m / 2+1, N-k)
\end{array}\right.
$$

$\max \{$
\qquad
\qquad

Divide and Conquer

- Align $x_{m / 2}$
- Recursively do the same for the two
\qquad remaining chunks of the alignment. \qquad

\qquad
\qquad

Saad Mneimnen

Analysis

- $T(m, n)=$ time to align $x_{1} \ldots x_{m}$ and $y_{1} . . y_{n}$
- $T(m, n)=c . m n+T(m / 2, k)+T(m / 2, n-k)$
- Assume $T(m, n) \leq 2 c$. $m n$, verify by substitution:
- $T(m, n) \leq c . m n+2 c . m / 2 . k+2 c . m / 2 .(n-k)$ $=c . m n+2 c . m / 2(k+n-k)$
$=c . m n+2 c . m / 2 . n=c . m n+c . m n$ $=2 \mathrm{c} . \mathrm{mn}$

