[]
Computat & onal Biology

Lecture 4

Semiglobal Alignment

« We score alignments ignoring start and end gaps.
« Start gaps occur before the first character in a sequence.
« End gaps occur after the last character in a sequence
CAGCA- CTTGGATTCTCGG
(- - CAGCGTGG:- - >
start gaps end gaps

« Score = +1(6) -1(1) -2(1) -11(0) = 3

« This is not the best global alignment between the two sequences
(-12 for global optimal against -19 if scored globally)

Why this variation?

Maybe it is OK to have unlimited number
of gaps at the ends, e.g. detecting
significant overlap

Different possible overlaps
- —

—_—

Modifying Needleman-Wunsch

« Ignoring start gaps
—AG,0)=0
-A(0)) =0

* Ignoring end gaps

max; A(m,j)

AOPT = max{

max; A(i,n)

Explanation

« Initializing the first row and first column to zeros
eliminates any starting gap penalty.

« An alignment with end gaps in x aligns x with a prefix of
y.
S XXXXXXX- = = =
~YYYYYYYYYYY

Therefore, the max;, A(m,j) (last row) gives the maximum
score for such an alignment.

* Same reasoning for y.

Generalization

Place where gaps are | Action
not penalized

Start of x Initialize first row to zeros
End of x Look for max in last row
Start of y Initialize first column to zeros

End of y Look for max in last column

Local Alignment

« Given two sequences x and y, find a highest score alignment
between a substring of x and a substring of y

* Example:
Global GGAGTA
scores -1 GC-Grc
G GAGT A
Local GCeGr ¢
scores 2
GGA GT A
GC Gr C

Why Local Alignments?

Comparative genomics:
— Genes are shuffled in different genomes

Finding preserved sequences

— Different proteins have preserved repetitive
patterns

Greedy Way

¢ O(m?) substrings of x
e O(n?) substrings of y

e O(m®n?) algorithm using
Needleman-Wunsch on each pair

Facts

¢ The two substrings with the best score must be
matched at both ends (why?)

« The score of the best local alignment has to be
positive (why?)

* More generally: The best local alignment
cannot start or end with an alignment with
negative score (why?)

Modifying Needleman-Wunsch
* Same as before, but

— A(i,j) is now best score for aligning a suffix of x,...x;
and a suffix of y;...y;.

— Is the update rule still valid? Almost...

— Negative entries in the A matrix are meaningless
if A(i,j) <0, replace it with 0
i.e, starting over from A(i+1, j+1), A(i, j+1), and A(i+1,)).

[llustration

The best local alignment cannot start with a suffix
of x;...x; aligned with a suffix of y; ..y;.

Smith-Waterman

« [nitialization
- A(0j)=0
—A@l,0)=0

« Main iteration]]
Ali—1,j-1) +s(x,y)
- Ai-1,)—-d
A(Lj) = max Aﬂ j—Jl))—d
0
¢ Termination
ACPT = max;; A(i,j)

Example
G | c| e T c ,
o o [0 ol ol o mgiicon
G 0 1 0 1 0 0 the update
G 0 1 0 1 0 0
A 0 0 0 0 0 0
G 0 1 0 1 0 0
T 0 0 0 0 2,370
A 0 0 0 0 0 1

Trace back from max;; A(i,j) until you hita 0

Saving Space
(for Needleman-Wunsch)

» These basic algorithms require O(mn) time
and O(mn) space.

» No algorithm is known that uses
asymptotically less time and has the same
generality.

* It is possible to improve space
complexity from O(mn) to O(m+n).

First Attempt

* We only need to keep one row of the matrix A at any
given time.

* Therefore, we only need O(m+n) space to
compute the optimal score.

* What about producing the alignment itself?

Saving Space (cont.)
* We know how to compute the optimal score in
linear space.

— In fact, we can compute the best scores between a
given prefix of x and all prefixes of y (How?)

¢ The hard part is to obtain the optimal alignment
itself in linear space

— the previous algorithms depend on the whole matrix
to do this job.

— Use a Divide and Conquer to remove this difficulty.

aad Mneimneh

Key Idea

» Consider x; in an optimal alignment of x and y
— X;is aligned with y;for 1< j<n OR

— X is aligned to a gap between y;and y;,; for0< j<n

Yi- Y2 Y3 Ya - Y5 - Yn -

2n+1 possibilities

Key Idea (cont.)

Given i, guess what is matched to x; in an optimal
alignment by finding the best alignments that match x; to
each of the 2n+1 positions

opr | Xar - Xic1 X opr | Xivtr - Xm
Yi--Yj-1 Yj Yj+1- - Yn

opT X1 Xjoa Xi opT Xis1: - X
Yi- - Y - Yj+1- - ¥Yn

« Compute the best scores between

— Xy.-Xpy2, and all prefixes of y

— Xpze1---Xp and all suffixes of y (the reverse)
k
Y. Yn Yn

[H
Xy [X

Xiz-1 :::H

X241 D

Xm X,

* Find k that maximizes
AM/2 -1, k=1) + S(Xp2Yi) + B(M2+ 1, n—k)
max

A(M/2 -1, K) + S(Xpp-) + B(M/2 + 1, N - k)

Divide and Conquer

* Align X,

» Recursively do the same for the two
remaining chunks of the alignment.

c.m.n

c.m/i2.k + cm/i2.(n-k) = cm/2.n

Analysis

T(m,n) = time to align X;...X, and y; ..y,

T(m,n) = c.mn + T(m/2, k) + T(m/2, n — k)

Assume T(m,n) < 2c.mn, verify by substitution:

T(m,n)

<c.mn + 2c.m/2.k + 2c.m/2.(n — k)
=c.mn + 2c.m/2(k + n — k)

=c.mn + 2c.m/2.n = c.mn + c.mn
=2c.mn

