CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

Introduction to Memory Management in GTK+

Introduction

The purpose of this chapter is to get you to understand how memory is managed in GTK+ so that your
applications do not have memory leaks and do not crash because of invalid references. There are only two
ways, in essence, that you can foul up a program with respect to how it deals with memory. The first is when
it, fails to release memory that it no longer needs, causing a memory leak. The second is when it tries to
reference an object that does not exist at the address that it is using for it. This is either because the object
no longer exists, or because it does, but the variable through which it is being accessed has an incorrect
address.

You may think that it is not really necessary to prevent memory leaks. After all, there is an awful lot of
memory available, and the operating system will clean up after your application when it finishes, so it does
not matter whether it is grabbing more physical memory than it really needs while it is running. But if you
are trying to be professional about your work, you must not allow your application to grab more memory
than it needs, because it will decrease its own performance as well as the performance of the machine on
which it runs. And if the leak is bad enough, not only will your program grind to a halt, but the computer
will too!!

Invalid references inevitably result in crashes and must absolutely be prevented. You never have to worry
about this kind of problem if your application never allocates memory dynamically; if every variable that
your application uses is either allocated on the run-time stack, i.e., what you would call a local variable but
is technically called an automatic variable, or in the data segment (as when it is declared static or is in
global scope), then the binding of the address to the variable name is fixed. In GTK+ though, virtually
everything that the application creates is through a pointer: widgets, list and tree stores, strings, and so on.
For example, creating a button is accomplished with

GtkWidget *button;
button = gtk_button_new();

The storage for the button is created by GTK+ and a pointer to it is returned by gtk_button_new(). Your
application accesses the button widget through the pointer and so there is a possibility that you can foul
things up if you do not understand how the memory is managed.

Reference Counting

If you understand reference counting you will not have any problems with memory management. The idea
is essentially the same as how UNIX manages disk storage for files, and if you are not familiar with this,
then now is as good a time as any to learn about it. In UNIX, a file is represented by an i-node, which is
a data structure containing all of the important information about the file, such as who owns it, who has
permission to do what to it, how big it is and where its blocks are located, and much more. The i-node also
as a link count, which is the number of names that the file has. A file’s name is not a part of the i-node.
Files can have many names, in the same or different directories, but not spanning multiple file systems. The
same file might be named mydata in my home directory, and stewart_data in some other directory. In this
case the link count in the i-node would be 2. If someone else creates a name for the file in a different place,

IThis is not hypothetical. This exact problem happened once to me.

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

the link count would go up to 3. Each time that a name is removed, the link count is decremented. If the
link count reaches zero, the i-node is deleted as well as the storage for the file.

Objects are reference counted in GTK+. Whereas in UNIX the reference count is the number of names that
a file has, in GTK+, it is the number of owners of an object. The concept of an owner will be made clear
shortly. Objects are created with a reference count of one. Each time that a new reference to an object is
created, its reference count is incremented. When a reference is removed, the count is decremented. If the
count reaches zero, the object’s memory is freed. The act of freeing the memory associated with an object
is called finalizing the object.

The concept would be fairly simple to understand except for the fact that there are two different types of
objects, those that are derived from GInitiallyUnowned, and those that are not. Recall that the top of the
object hierarchy looks like this:

GObject
+----GInitiallyUnowned
+----GtkObject
+----GtkWidget

Notice that GtkWidget is derived from GtkObject, which is derived from GInitiallyUnowned, which means
that every widget is indirectly derived from GInitiallyUnowned. What, you may wonder, is a GObject that
is not GInitiallyUnowned? This list is quite long and includes commonly used objects such as

GtkAction
GtkListStore
GtkPrinter
GtkStyle
GtkTextBuffer
GtkTextMark
GtkTextTag
GtkTreeSelection
GtkTreeStore
GtkUIManager

Among these are objects that you have encountered already, such as the GtkTextBuffer. The full list can
be found in the GTK+ object hierarchy at http://library.gnome.org/devel/gtk/stable/ch01.html.
Objects that are derived directly from GObject are where we shall start, for they are easier to understand.

Direct Descendants of GObject

Objects descending directly from GObject are created with an initial reference count of one. Let us use the
GtkListStore to demonstrate these ideas. List stores are used with tree view widgets. A tree view widget
displays data in a row and column format, much the way a file browser does. The list store is one type of
object whose data can be viewed with a tree view. It is essentially a linked list. A GtkListStore is created
with the function

GtkListStore* store = gtk_list_store_new();

which creates store with a reference count of one. One says that the application owns the reference to
store. The documentation would say that this particular code owns the reference, because the application
can be large, and it is better to think of the separate parts of it as owning the objects they create.

The reference count of any object can be incremented by calling g_object_ref() on the object. Thus, to
increment the reference count of store, we would call

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

g_object_ref (G_OBJECT(store));
To decrement the reference count of an object, we use g_object_unref (), as in
g_object_unref (G_OBJECT(store));

which decreases the reference count by one.

The method that assigns a GtkListStore to a tree view is gtk_tree_view_set_model(), as in
gtk_tree_view_set_model(GTK_TREE_VIEW(treeview), GTK_TREE_MODEL(store));

After the gtk_tree_view_set_model() function has returned, the tree view, treeview, will own a reference
to the list store. Methods such as gtk_tree_view_set_model (), which acquire ownership of an object,
increment the object’s reference count using g_object_ref () in their implementations. If they did not do
this, then, if an application ever called g_object_unref () on the object, its reference count would drop to
zero and it would be finalized. At that point, they would hold a reference to invalid memory and a crash
would ensue at the next attempt to access the data. So after the list store has been added to the tree view,
its reference count is two.

The way that a GtkTreeView makes a GtkListStore what it displays is similar to the way that a GtkTextView
widget makes a text buffer what it displays, using gtk_text_view_set_buffer(), as in

gtk_text_view_set_buffer(GTK_TEXT_VIEW(textview), GTK_TEXT_BUFFER(buffer));

Because the text view acquires ownership of buffer, gtk_text_view_set_buffer() increments the refer-
ence count of buffer. If buffer was created by some other portion of the code that acquired ownership at
creation time, the reference count of buffer would be two, indicating that buffer had two owners. (Text
buffers can be shared by multiple text view widgets.)

Let us return to the discussion about the list store. Your application should no longer need to access the list
store once it is added to the tree view. All access to the list store takes place through the tree view. Therefore,
as soon as it has called gtk_tree_view_set_model(), it must relinquish its reference and decrement the
reference count with g_object_unref () thus:

gtk_tree_view_set_model(GTK_TREE_VIEW(treeview), GTK_TREE_MODEL(store));
g_object_unref (G_OBJECT(store));

This ensures that the reference count is dropped to one, so that when the tree view is destroyed and it unrefs
all of its child objects, the store’s reference count will become zero and it will be finalized as well. I will talk
more about the subject of destruction later.

To summarize, when your application creates an object that descends directly from GObject, once it has
attached it to an object or widget that assumes ownership, you should call g_object_unref () on the object.

Objects Descending from GInitiallyUnowned

The story is very different for objects descending from GInitiallyUnowned. All such objects are created
with a floating reference count of one. A floating reference is a reference that is not owned by anyone. This is
why the class is called GInitiallyUnowned, because initially, objects of this class are un-owned. A floating
reference can be thought of as a special kind of reference not associated with any owner. Technically it is a
flag in the GObject structure that indicates whether or not the initial reference is floating or not; when it is
set, the object has a floating reference and when it is clear, the reference is non-floating.

The need for floating references is two-fold. One reason for them is that they are a way to keep objects alive
after they are created but before they are attached to parent containers. This will be explained below. The
other reason stems from the way that functions can be called in C. Consider the following code:

3

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

container = create_container();
container_add_child (container, create_child());

Suppose that container is some type of container widget and that container_add_child() adds a child
widget to the given container and also adds a reference to the given child, which in this case is the object cre-
ated by the call to create_child (). Suppose that floating references did not exist and that create_child()
creates an object with a reference count of one. Since the container acquires a reference to the object and
increments the reference count, the child object would have a reference count of two after the call. However,
because the return value of create_child() is not assigned to any object, there is no object on which to
call g_object_unref () to decrement the count to one. When the container is destroyed, it can “unref” the
child object, but the child object’s count will drop to one, not zero, and there will be a memory leak since
the child’s memory can not be freed until the reference count reaches zero.

The following code could be used in the absence of floating references without causing a memory leak:

Child *child;

container = create_container(); // container ref-count =1
child = create_child(); // child ref-count = 1
container_add_child (container, child); // child ref-count = 2
g_object_unref (child); // child ref-count = 1

The difference is that the return value from create_child() is stored in child, so that g_object_unref ()
can be called on child. However, since it is possible to write code in C the first way as well, the GObject
library was designed to allow such code to work correctly.

The idea of floating references allows the above code to be free of memory leaks, but only if the container
has the ability to acquire ownership and convert the floating reference to a standard reference, which is what
ordinary references are called. The changes are as follows:

e A function that creates a widget, such as create_child() above, creates it with a floating reference
count of one, i.e., one that is initially unowned, rather than a standard reference count of one.

e A function that adds a child widget to a container, such as container_add_child() above, does not
call g_object_ref () on the child object because that will not clear the floating reference flag. Instead
it calls g_object_ref_sink().

The function g_object_ref_sink() exists so that, when a widget is added to a parent container, the
container can do two things:

1. remove the floating reference, and

2. acquire its own standard reference to the widget.

The call
g_object_ref_sink(object)

works as follows. If object had a floating reference, then after the call, the code that executed it owns a
reference to object, the reference count is unchanged, and the floating flag is cleared. If object did not have
a floating reference, g_object_ref_sink() has the same effect as g_object_ref (), namely it increments
the reference count. Thus, conceptually you should think of the sink operation as

if (was_floating(object))

clear(object->floating_flag);
else

g_object_ref (object) ;

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

In the example code above,

container = create_container();
container_add_child (container, create_child());

create_child() creates a Child widget with a floating reference of one, and the container_add_child()
function calls g_object_ref_sink() on the anonymous child widget (as an object of course), acquiring
ownership of it, giving it a standard reference count of one. When the container is destroyed it will unref
the child, dropping its count to zero, causing the child to be finalized without any need for the application
to unref the child outside of container_add_child().

All widgets except for top-level windows start out life with a floating reference. Top-level windows are
different because they are never put into containers — they are the roots of the container trees. When a top-
level window is created, the GTK+ library immediately sinks its floating reference and assumes ownership
of it, so when it is handed to your application, it has a standard reference count of one.

If an application creates a widget that is not a top-level window, then at some point it will probably be
packed into a container. All of the functions that pack widgets into containers automatically sink the widget’s
floating reference and give the container ownership of the child. This way, when the parent widget eventually
receives a destroy signal and unrefs its child objects, their standard reference counts will drop to zero and
they will be finalized (unless in the application, for one reason or another, the code calls g_object_ref ()
on any of the children without a corresponding g_object_unref (), causing a memory leak!) To be clear,
when your application creates a widget of type foo using a constructor such as gtk_foo_new(), and adds
that widget to a container, it never needs to do anything else to manage the widget’s memory; GTK+ will
take care of freeing the memory when the widget is destroyed.

We can shed more light on this topic with the following example. You might expect that the two instructions

GtkWidget *gadget = gtk_gadget_new ();
gtk_widget_destroy (gadget);

will simply create gadget, allocating memory for it, and then immediately de-allocate its memory. On the
face of it that seems to make sense. But in fact, this will cause a memory leak! When gadget is created, it
has a floating reference only. The call to gtk_widget_destroy() is equivalent to

gtk_object_destroy (GTK_OBJECT (gadget)) ;
The documentation for gtk_object_destroy states that

The memory for the object itself won’t be deleted until its reference count actually drops to zero;
gtk_object_destroy() merely asks reference holders to release their references, it does not free
the object.

In other words, gtk_widget_destroy() does not unref the object; it just asks reference holders to let go of
their references. Since gadget was not packed into any container, and therefore g_object_ref_sink() was
not called on it, it is not owned by any reference holder, and so gtk_widget_destroy() will not free the
memory held by gadget. As a result, there is a memory leak. Of course there is no reason to write code like
this, but in case for some strange reason you wanted to create a widget and then later destroy it and free
the memory that it holds, without ever adding it to a container, you would have to unref it yourself in the
code:

GtkWidget *gadget = gtk_gadget_new ();

g_object_ref_sink(G_OBJECT(gadget)); // convert floating ref to standard ref
gtk_widget_destroy (gadget); // break external references
g_object_unref (G_OBJECT (gadget)); // decrease ref count to 0

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

Once again, there is little reason to create a widget that you have no intention of adding to a container other
than a top-level window?. The purpose of the preceding discussion is to clarify how reference counting works
with respect to objects such as widgets that are derived from GInitiallyUnowned.

GLib Strings
There are different types of strings that can be used in a GTK+ application written in C:

char *stringl; // The standard C string
gchar *string2; // Identical to a standard C string as gchar is a typedef of char
GString string3; // An extension of C strings that can grow automatically

When using standard C string functions, such as g_strdup(), g_strnfill(), or g_strdup_printf (), the
general rule is that, if the documentation says that the function returns a newly allocated string, then the
returned string should be freed with g_free(). Usually the documentation will explicitly state that the
returned string must be freed with g_free(). If it says neither of these things, then do not call g_free()
on the string, unless you would like the program to crash.

A GString object is a structure

typedef struct {

gchar *str;

gsize len;

gsize allocated_len;
} GString;

whose memory GLib manages. GLib provides functions to grow and shrink a GString object. The internal
pointer, str, is the address of the buffer, and may be moved around as the string grows and shrinks. A
GString object is created with one of the g_string_new() family of functions. It must be freed, when you
are finished with it, using g_string_free(). If you want both the structure and the buffer contents within
the structure to be freed, then the proper call is

gchar* buf = g_string_free(string, TRUE);

The second argument controls whether the string data is also freed, or just the wrapping structure. If TRUE
is passed, the return value is NULL. If the second argument is FALSE, then the buffer is not freed and the
return value is a pointer to the buffer, which must be freed when the code is finished with it, using g_free().

GdkPixbuf Structures

GdkPixbuf structures are derived directly from GObject and are reference counted. They are created with a
reference count of one. An application can share a single pixbuf among many parts of its code. When a part
of the program needs to hold a pointer to a pixbuf, it should add a reference to it by calling g_object_ref ().
When it is finished with the pixbuf, it should call g_object_unref () to decrement the reference count. The
pixbuf will be destroyed when its reference count drops to zero. The reference count in general needs to be
equal to the number of distinct pointers to the object.

21f you are thinking that dialogs are not added to containers but that they get destroyed by gtk widget destroy(), it is
because dialogs are top-level windows and GTK+ owns a reference to them. The destroy signal causes GTK+ to call unref on
the dialog, freeing its memory.

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

The rules described above for C strings generally apply to pixbufs as well. Certain functions that return
a GdkPixbuf pointer will note in their documentation that they return a newly allocated pixbuf with a
reference count of one. If you use such a function, then you must call g_object_unref () on it when you are
finished using the newly allocated pixbuf. If a pixbuf was used as a source for creating a new pixbuf, as is the
case with gdk_pixbuf_add_alpha(), which will create a modified version of a pixbuf, and the original is no
longer needed, then you should call g_object_unref () on it immediately afterward to relinquish ownership
and decrement the reference count.

The last thing that you need to be aware of regarding pixbufs is that, if you use gdk_pixbuf_new_from_data()
to create a pixbuf from data stored internally in memory already, such as an array of pixel values, then you
may also need to provide a function that “knows how” to free the memory belonging to that data when the
reference count on the pixbuf drops to zero. You should consult the documentation if you plan to use this
function.

List and Tree Stores

The GtkTreeModel interface defines a generic tree interface for use by the GtkTreeView widget. It is an
abstract interface that is designed to be usable with any appropriate data structure. The GtkTreeStore
and the GtkListStore are two implemented GTK+ tree models. They provide the data structure as well as
all appropriate tree interfaces. Populating them with data requires using either the gtk_list_store_set()
method or the gtk_tree_store_set () method respectively. There are variations on these two functions,
but the remarks below are true regardless of which variation is used.

Both gtk_list_store_set() and gtk_tree_store_set() accept a variable number of arguments, which
are essentially ordered pairs, as in

void gtk_tree_store_set (GtkTreeStore *store,
GtkTreelter *iter,
* _1);

where the missing arguments are pairs of the form (column_id, value) in which column_id is an integer
and value may be any value whatsoever, such as strings, integers, pixbufs, or pointers to arbitrarily complex
structures. What you need to know is whether the data passed to this function is copied into the store’s
row, or accessed by reference. For example, in the call

gchar namel[] = “Groucho’’;
gtk_tree_store_set (store, &iter, NAME_ID, name, -1);

the question is whether the actual string data stored in name is copied into the row referenced by the iterator,
or whether a pointer to name is copied into the row.

The short answer is that you do not need to worry about allocating and freeing memory for the data to store
because the underlying GLib/GObject GType and GValue system takes care of most memory management
automatically. For example, if you store a string in a column of a row, the model will make a copy of the
string and store the copy. If you later change the column to a new string, the model will automatically free
the old string and again make a copy of the new string and store the copy.

The long answer is that when data is added to a list or tree store using any of the gtk_x*_store_set()
functions, how it is handled by GTK+ depends on which of three categories of data it falls into.

1. If the data is a GObject (i.e., an object derived directly from GObject) , then the store takes ownership
of it by calling g_value_dup_object() on the object and relinquishing ownership of the previously
held object, if it is replacing an old value.

CS¢if93.70 Graphical User Interface Programming Prof. Stewart Weiss
Introduction to Memory Management in GTK+

2. If the data is a simple scalar data type such as a numeric, Boolean, or enumerated type or a pointer,
then the store makes a copy of the data. Note that the pointer is copied, not the data to which it
points.

3. If the data is a string or a boxed structure, then the store duplicates the string or the boxed structure
and stores a pointer to it. If the data is replacing existing data, then in this case the string or
boxed structure is freed first using g_free() or g_boxed_free() respectively. (GBoxed is a wrapper
mechanism for arbitrary C structures. They are treated as opaque chunks of memory.)

This may leave you wondering about questions such as how GTK+ handles pixbufs. As noted above, pixbufs
are derived directly from GObject and fall under category 1 above. When retrieving data from a store with
gtk_tree_model_get() or any of its variants, you have to be aware of how GTK+ handles the different
types of data, so that you know whether or not to free its memory when you are finished with it:

1. If the data being obtained is a GObject, the function increments its reference count, since it is providing
another reference to it for us.

2. If the data is a simple scalar data type such as a numeric, Boolean, or enumerated type or a pointer,
the function makes a copy of it and delivers the copy.

3. If the data is a string or a boxed type, the function copies it and returns a pointer to the data.

This implies that we need to call g_object_unref () on objects acquired from the store when we are finished
with them, and free the data we retrieved from store if it is string or boxed type data (using g_free() or
g_boxed_free() respectively) when finished with them. Focusing on pixbufs again, they are category 1 and
so it is necessary to relinquish ownership of a pixbuf acquired from a store using gtk_tree_model_get () by
unref-ing it. No other data needs to be memory managed.

Closing Thoughts

When you are debugging your program, it is a good idea to turn on a system monitor and watch the virtual
and physical memory usage of the program. If you see it steadily climbing as the application runs, then
you have a leak somewhere. My suggestion is that you put the program through repeated actions such as
clicking the same menu item repeatedly, to see which is the culprit.

It will be obvious if you have freed memory that you were not supposed to free because the application will
crash. You should look at the bug report issued by your window manager (e.g. Gnome) and look at the
stack trace. Starting at the top of the stack, descend it until you find the first function whose code is yours,
as opposed to a GTK+ library. Therein lies the code that killed the beast. Work backwards through it with
the help of what this document provides and you will find the mistake.

There are more formal methods of finding leaks, but the preceding approach is relatively easy to do and does
not require learning how to use a new tool. If you do want to learn how to use a good tool, get a copy of
Valgrind (http://valgrind.org/) which is open source, free software for memory management analysis.

