Does an infinite Skolem sequence optimize anything?

Saad Mneimneh

June 2024

An infinite Skolem sequence $s_{1}, s_{2}, s_{3}, \ldots$ is such that for every $n \in \mathbb{N}=$ $\{1,2,3, \ldots\}$ there exist exactly two integers $a_{n}<b_{n}$ that satisfy $s_{a_{n}}=s_{b_{n}}=n$. Furthermore, $b_{n}-a_{n}=n$. For example, the first lexicographic Skolem sequence given by:

$$
1,1,2,3,2,4,3,5,6,4,7,8,5,9,6, \ldots
$$

also satisfies $n<m \Leftrightarrow a_{n}<a_{m}$. Does an infinite Skolem sequence optimize anything?

For a given infinite sequence that contains every integer $n \in \mathbb{N}$ exactly twice, assume that the limits $\lim _{n \rightarrow \infty} a_{n} / n=\alpha$ and $\lim _{n \rightarrow \infty} b_{n} / n=\beta$ exist. It is not hard to see that $\alpha \geq 1$ and $\beta \geq 2$. First, pick an integer m. Let $n \leq m$ be such that all first occurrences of the integers $\{1,2, \ldots, m\}$ appear within the first a_{n} terms of the sequence. Obviously $a_{n} \geq m \geq n$. There are infinitely many such pairs (m, n) and, therefore, $\alpha \geq 1$. Similarly, let $n \leq m$ be such that all second occurrences of the integers $\{1,2, \ldots, m\}$ appear within the first b_{n} terms of the sequence. Then $b_{n} \geq 2 m \geq 2 n$. There are infinitely many such pairs (m, n) and, therefore, $\beta \geq 2$. In addition, $1 / \alpha$ and $1 / \beta$ can be thought of as the rate of adding new integers to the sequence, and the rate of adding second copies to the sequence, respectively. Therefore, we have $1 / \alpha+1 / \beta=1$.

Now, let's say that we want the first and second copies of every integer to appear as soon as possible. Obviously, the two extremes are $1,2,3, \ldots$ with $\alpha=1$ and β undefined, and $1,1,2,2,3,3, \ldots$ with $\alpha=\beta=2$. This is shown in the figure below. We would like α to be close to 1 and β to be close to 2 . Therefore, we can minimize $\max (\alpha-1, \beta-2)$. This can be done by making $\alpha-1=\beta-2$ as shown. Combined with the constraint $1 / \alpha+1 / \beta=1$, this leads to $\alpha=\phi=(1+\sqrt{5}) / 2$ (the golden ratio).

An infinite Skolem sequence satisfies $b_{n}=a_{n}+n$, so $\beta=\alpha+1$ as desired. In fact, the first lexicographic infinite Skolem sequence has $a_{n}=\lfloor n \phi\rfloor$ and $b_{n}=a_{n}+n=\lfloor n \phi\rfloor+n=\lfloor n \phi+n\rfloor=\lfloor n(\phi+1)\rfloor=\left\lfloor n \phi^{2}\right\rfloor$.

Figure 1: The constraint $1 / \alpha+1 / \beta=1$ with $\alpha \geq 1$ and $\beta \geq 2$. The point $(\phi, \phi+1)$ minimizes $\max (\alpha-1, \beta-2)$ as shown by the square, making $\alpha-1=$ $\beta-2$.

Therefore, if we wish for both copies of every integer to appear as soon as possible, we can use the first lexicographic infinite Skolem sequence. Why is this useful? Well, I don't know. But imagine the following fictitious scenario. Every integer corresponds to a message, but for every integer n, there is a non-zero probability that message n is lost once, and a zero probability that message n is lost twice. One naive communication approach is to send an infinite stream where every message appears exactly twice. However, we want the recipient to receive messages $1,2, \ldots, n$ as soon as possible for every n. It looks like the first lexicographic infinite Skolem sequence will achieve just that!

Note: The idea of seeing both copies of n as soon as possible is informal, because there are other formulations that could be interpreted as such. For instance, one might want to minimize $\max (1-1 / \alpha, 1 / 2-1 / \beta)$, or find a multiplier r such that $\alpha=1 / r$ and $r \cdot 1+r \cdot 1 / 2=1$, which would result in different optimal values that an infinite Skolem sequence does not achieve. The goal was to show a non-trivial setting for which the infinite Skolem sequence is optimal.

