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In this paper, we use a hill-climbing algorithm to construct Skolem sequences of arbitrary order. 
The details of the algorithm is given. Samples of the generated sequences are also given. 
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INTRODUCTION 

A Steiner triple system (STS) of order v, STS(v), is a pair of sets (V, B) where 
I V I = v and B consists of 3-subsets (triples or blocks) of V such that any 
2-subset of V is included in exactly one block. A STS(v) exists iff v = 1 or 3 
(mod 6). 

A STS(v) is cyclic if its automorphism group contains a v-cycle. A cyclic 
STS(v) exists for all v =  1 or 3 (mod 6) except for v = 9. For more 
information about Steiner triple systems and other combinatorial designs 
the reader may consult Anderson (1990). 

*Corresponding author. 
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While studying Steiner triple systems, Skolem (1957) asked whether it is 
possible to partition the set {1,2,. . . ,212) into n pairs (a,, b,) where 
b, - a, = r, for r = I, .  . . , n. He showed that such partition is possible if 
and only if n = 0, l  (mod 4). Later, such partitions were written as sequences, 
which are now known as Skolem sequences (SS). To illustrate, consider the 
case of n = 4, the sequence 1, 1, 4, 2, 3, 2, 4, 3 is equivalent to the partition 
of the set (1, 2,. . . ,8) into the pairs (1,2), (4,6), (5,8), (3,7). 

Formally, a Skolem sequence of order n is an integer sequence 
SS(n) = (sl, s2, . . . , s2,) of 2n integers satisfying the following conditions: 

(1) Vk E {l,2, . . . , n }. 3 exactly two elements si, sj in SS(n) such that 
3. = s .  = k. 

6 I 

(2) I f s i = s j = k , i < j t h e n j - i = k .  

Skolem (1958) also showed that the existence of a SS(n) implies the 
existence of a STS(6n + '1). By taking the pairs (ai, bi), i = 1, . . . , n produced 
from the sequence, we get the base blocks (0, i, bi + n, 1, i = 1,. . . , n} for the 
STS(6n + 1). For example, the above sequence produces the base blocks for 
STS(25). 

{{0,1,61, 101, 121, 11 11 (mod 25) 
Skolem sequences are special types of starters. A starter in the Abelian 

group Z2, + is a set S = {(xl, yl), (x2, y2), . . . . . . , (x,, y,)) such that every 
non-zero element in Z2, + occurs as: 

(a) an element of a pair in S, and 
(b) a difference of a pair in S. 

The above pairs (1,2), (4,6), (5,8), (3,7) form a starter in Z9. Thus the 
existence of a Skolem sequence implies the existence of a starter, but the 
converse is not true. For more information on starters and their uses see 
Dinitz (1996). In fact, Skolem sequences and their generalizations are linked 
to several combinatorial designs, e.g., Room squares and perfect one- 
factorization of complete graphs (Shalaby, 1991). It is also linked with 
several mathematical topics such as the Golden section and Wythoff game 
(Nowakowski, 1975). 

The known applications of SS and their generalizations in the physical 
world include interference free missile guidance code (Eckler, 1960) and the 
construction of binary sequences with controllable complexity (Gorth, 1971). 
More details may be found in (Shalaby, 1996). 

It seems, however, that there is no published algorithm for the 
construction of Skolem sequences. For small values of n (up to 8, say), SS 
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may be generated by hand. For larger values of n exhaustive search may be 
used. However, practically speaking, exhaustive search is feasible for values 
up to 12. For larger values, no published algorithm is known. In this paper 
we use a hill-climbing algorithm to generate Skolem sequences so; (a) the 
designs that are related to SS can be generated and, as a special kind of 
starters (b) can be used by other researchers as an alternate method for 
generating the same objects starters generate, thus solving some of the still 
open problems in those areas. More specifically, the problem presented here 
is: given n = 0 , l  (mod 4), generate at random a Skolem sequence using a 
hill-climbing algorithm. We exhibit several results of our findings. 

Generation of SS may be done by enumeration or exhaustive search. 
However, due to the very large search space for even small values of n, e.g., 
for n > 12, unrestricted exhaustive search strategy is computationally very 
expensive. It is even unfeasible for larger values of n. A possible logical 
alternative is, therefore, to try a heuristic search method like hill-climbing. 

Hill-climbing (H-C) algorithms are among the powerful heuristic search 
methods. They were used to search for optimal or near optimal solutions in 
some optimization problems like the traveling salesman problem. After the 
emerge of artificial intelligence (AI) applications, H-C algorithms accepted 
even a more wider range of interest. As compared to exhaustive search 
methods, H-C presents a 'smarter' method to tackle considerable sizable 
problems. Recently, there has been greater interest in applying H-C to 
combinatorial design problems as demonstrated in Gibbons (1996) and 
Tovey (1985). For example, Dinitz and Stinson (1987) used a hill-climbing 
algorithm to special kinds of starters that in turn produce the Room squares 
and one-factorizations. A trace of the successful applications of H-C in 
combinatorial design theory was reported in Gibbons (1993). In this paper 
we adopt H-C for the generation of SS. To do so we have to introduce the 
new concept of partial SS and to define its length. 

PARTIAL SKOLEM SEQUENCES 

A partial Skolem sequence PSS(n) = (s,, s2, . . . , sZn) is a sequence of integers 
from ( 1 ,  . . . , n} such that: 



336 A. S. ELDIN et al. 

(1) Some integers in (1,. . . , n} occur in exactly two positions si, sj, 
(2) I f s i = s j = k , i < j t h e n j - i = k .  

PSS is in fact no more than a state during the SS generation process. In 
contrast to regular SS, it is possible to have voids in a PSS. For example the 
set 3, -, 2, 3,2, -, -, - is a partial SS that may occur during the generation 
of a SS of order 4. Ultimately, the undefined elements will be: 4, 4, 1, and 1 
(from left to right). 

The length of a partial SS, denoted by L is the number of defined pairs in 
the sequence. In the previous example L will be 2. It is obvious that L for a 
completely defined SS is its order; n. 

The generation of an initial partial ss is always possible. In the worst 
case, its length will be 1 only. This will happen if and only if the first two 
elements were consecutive ones, x+ 1 and x. As an example consider the 
generation of SS of order 4 and assume that the first two numbers were 4 
and 3. In this case it is clear that conflict will occur and the generated partial 
SS will be of length 1 only. 

THE ALGORITHM 

The main idea is to try to build the sequence by selecting its pairs randomly 
from the set of integers (1,. . . ,n}. If conflict occurs, we retain the so far 
obtained 'good' elements and remove the 'bad' or 'noisy' element to 
continue the generation process. This cycle is repeated until the number of 
removals exceeds a preset threshold whence a new set of random numbers is 
tried. Thus the H-C meta algorithm may be stated as follows. 

Let L(SS) be the number of pairs in a Skolem sequence of order n; 

L(SS) G 0; 
While (L(SS) # n) do 
begin 

Randomly arrange the set of integers (1, . . . , n) 

Generate an initial partial SS; 

if L(SS) = n then stop else 

While (Number-of-exchanges < threshold) do 
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begin 

exchange the 'noisy' element; 
continue generation of the SS; 
if L(SS) = n then stop else 
Number-of-exchange := Number-of-exchange + 1; 

end; 

endwhile; 

end; 
endwhile. 

The threshold parameter specifies how many exchanges we allow at any 
level before restarting the construction of a SS. Since the random number 
generator used is a recursive one, the new set obtained will never be identical 
to the previous one. This process is repeated until we get a valid SS. Since 
the necessary and sufficient condition for a SS to exist is that n must be = 0, 
1 (mod 4) as showed by Skolem (1957), we are sure from the very beginning 
about the existence of the SS. In this context we are lucky as compared to 
other cases where the existence of a particular combinatorial design is not 
guaranteed and whence another threshold is to be specified to completely 
abandon the search as in Gibbons (1993). 

The performance of our algorithm depends to some extent on the 
chosen value as a threshold. Here we should notice that a too small value 
of threshold means the frequent generation of random numbers which are, 
by all means, computationally expensive. On the other hand, too large 
value of threshold means many exchanges which may result at last in a 
dead lock or a dead end. This may happen due to the fact that excessive 
exchange may result in a cyclic loop where after some iterations we return 
to the same state again and thus we may loop indefinitely. Our algorithm 
do prevent direct cycling when the exchange process results in exactly the 
previous state as explained later. Although it is possible to retain all the 
previously generated partial SS to avoid cycling, it is obvious that it 
is'computationally extremely inefficient and in fact it violates the essence 
of H-C. 

In view of the above discussion we experimented with some numerical 
values for a threshold as in Seah (1988) and Gibbons (1996). 

Numerical experiments shows that a value of 6 is quite a reasonable 
threshold. 
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GENERATION OF THE SET OF RANDOM NUMBERS 

It is well known that the generation of truly random numbers by a computer 
is not an easy task. In fact, the vast majority of the functions used for random 
number generation are pseudo ones. Running the same function using the 
same seed will result in obtaining the same set of random numbers. To 
overcome this difficulty we used the time when the program starts multiplied 
by a large integer number as the seed for the RAN function. Random 
numbers generated this way are then normalized to the order of the SS; n. 
When a duplicate number is obtained it is skipped and another number is 
tested. Although the last number in the list may be inserted, we prefer to 
obtain it as other numbers. A pseudo code for this procedure is as follows. 

Procedure Generate-numbers (Num, n); 
Begin 
Seed := Current-time * 1234567; 
Num[l, . . . , n] := 0; 
Row P 1; 
Repeat until Row > n; 
Begin 

While ( x  # 0 and x # 1) do 

If y 6 Num[l . . Row] then 

begin 
Nurn[Row] z= y 
Row := Row + 1; 
end; 

endwhile; 

end; 
end. 

Comments: 

- Seed is an integer variable used to call the RAN function. 
- Num is an integer array of n elements to hold the normalized random 

numbers. 
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- n is the order of SS. 
- Row is an integer variable used as an index for the Num array. 
- RAN is the random number generator. It produces uniform random 

numbers ( O,1 ). 
- Int is the truncation function. 

GENERATION OF SKOLEM SEQUENCES 

Here we generate the elements of the SS using the set of random numbers 
stored in Num array. We denote the element a, in the pairs (a,, b,) as the 
element while the element b, as the twin. The steps are as follows. 

index = 1; 
While (index 5 n) do 
begin 

Generate-numbers (Num, n); 

Whiie (Number-of-exchanges < threshold) do. 

index = index + 1; 
if index > n then'stop; 
x F Num[index]; 
Check-SS (x, indexl); 
if indexl # 0 then 

SS [index 1] = x; 
SS [index 1 + x] := x; 

else 
Scan-array (x, remove, lastone); 
Num[index] = remove; 
index F index- 1 ; 
Number-of-exchanges = Number-of-exchanges + 1 ; 

endif; 
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end; 

endwhile; 

end; 
endwhile; 

Comments: 

- index is an integer variable used as an index to the Num array. 
- Check-SS is a procedure to check whether x can be stored in SS or not. 

At return of this procedure we may have indexl set to 0 to indicate that it 
is not possible to store the element in the SS array. If it is possible to store 
it, then indexl will hold the element number in SS. 

- Scan-array is a procedure to scan the SS array and do the exchange 
process. 

- remove is the removed element from SS due to exchange. 
- lastone is the value of the last removed element. 

EXCHANGE STRATEGY 

An element may be stored in SS array only if its twin can be stored in the 
right place as well. If such a condition is not fulfilled we denote that element 
as being a 'noisy' element. For 'noisy' elements exchange must be done to be 
able to proceed with the SS generation. For that purpose, we scan the SS 
array for the jrst  available empty element. We then check that the twin 
position is still within the boundaries of the SS array. If both conditions are 
met we do the exchange process by placing the 'noisy' element and its twin in 
the appropriate places. We remove the old element from the SS aray. If, 
however, it was not possible to store the twin within the boundaries of the 
SS array, we store the twin of the 'noisy' element in the last available 
element in the SS array and remove the element corresponding to the 
original element. The last exchanged element is always stored and if the 
exchange process will lead to remove. the last exchanged element it is 
stopped to avoid cycling. 

CYCLING AVOIDANCE 

To avoid cycling i.e., in step i+ 1 we do the same exchange we did in step i in 
a reverse direction, we use a flip-flop switch to scan the SS array from left to 
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right in step i while scanning it from right to left in step i + 1. We also check 
that the element to be exchanged in not the last one exchanged in previous 
step. However, in very exceptional cases our scheme for cycling avoidance 
will fail, in this case we generate a new set of random numbers and start our 
algorithm again. To illustrate consider the following case when generating 
SS with n = 8. We reached the following partial SS and the last exchanged 
element was 2. 

We are left with 8 only. In this case forward scanning leads to store 8 in 
second place and remove 2. On the other hand, backward scanning leads to 
the store of 8 in the last place and the removal of 2 as well. So in such very 
rare cases, we have to consider another set of random numbers as stated 
before. 

EXAMPLES 

Assume that an SS of order 5 is to be generated. Assume further that the set 
of random numbers generated was: 1, 3, 5, 4, 2. We show in a step by step 
fashion the progress of our algorithm. as follows. 

We can easily build the partial SS shown below. 

We are left with the two elements 4 and 2. Now we find it is impossible to 
store 4. Scanning forward will result in conflict with 5; while backward 
scanning will be in conflict with 3. Suppose we choose to remove the 5. Then 
the new partial SS will be: 

We are now left with 5 and 2. Now it is possible to store 5 and 2 and we 
obtain: 
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IMPLEMENTATION AND NUMERICAL EXPERIMENTS 

The described algorithm was implemented in ANSI 78 FORTRAN known 
as FORTRAN 77 run on a Sun 690 server under UNIX 0s. Table I shows 
the number of trials required to obtain SS of different orders. It is obvious 
that, in general, there is no trend observed between the number of trials 
and n. 

In Appendix A examples of the generated SS of different orders are given. 

ANALYSIS OF THE ALGORITHM 

Obviously, hill-climbing is a local heuristic search (local improvement 
algorithm), thus it does not guarantee finding a global optimum or after 
running a certain number of times to find exhaustively all solutions. 
However, under the assumptions that: 

(a) avoidance of cycling, 
(b) all orderings of partial solutions are equally likely. 

THEOREM (Tovey, 1985) Under the assumption that all orderings are 
equally likely, the expected number of iterations of any local improvement 
algorithm is less than (3/2)en. 

Tovey also showed that, even though the local improvement algorithm is 
very fast to reach the local optima, it is unlikely to find the global optima. In 
our case, our algorithm satisfies (a) and (b) and, the number of global 

TABLE 1 Generation of Skolem sequences 

n # of trials 
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optima i.e., solutions of Skolem sequences increases exponentially with n. 
Abrham (1986) showed that the number of distinct Skolem sequences of 
order n, on 1 2Ln'3J. These peaks seems sufficient for the practical purposes 
for finding design configurations when n is relatively small. 

SKOLEM SEQUENCES AND NEW PERFECT 
ONE-FACTORIZATIONS OF K36 

A one-factorization of a complete graph Kzn is a partition of the edge-set of 
K2,, into 2n - 1 one-factors, each of which contains n edges that partition the 
vertex set of KZn. A perfect one-factorization is a one-factorization in which 
every pair of distinct factors form a Hamiltonian cycle of the graph. We 
construct one-factorizations by using starters from Skolem sequences as we 
showed earlier. The following two new Perfect one-factorization for 
were found by checking significantly less number of starters than that used 
by Seah and Stinson (1988): 

15,3,9, 14, 3, 16, 12, 17,4, 1 ,  1,9,4, 13,2, 15,2, 14, 12, 10, 8, 16, 11,7, 
17,6, 13, 5,8, 10, 7 ,6,5,  1 1  and 10, 14,9, 13, 17,8,6, 16, 12, 5, 10,9,6, 
8 , 5 , 1 4 , 1 3 , 1 5 , 7 , 1 1 , 1 2 , 1 7 , 2 , 1 6 , 2 , 7 , 1 , 1 , 3 , 4 , 1 1 , 3 , 1 5 , 4  

CONCLUSIONS 

Hill-climbing algorithms present attractive vehicle to the solution of many 
problems in different fields. Their versatility and ease of implementation are 
the key factors behind their wide spread and acceptance. Generating Skolem 
sequences of arbitrary order using hill-climbing is demonstrated in this 
paper. One of the critical parameters that greatly influence the performance 
of the hill-climbing algorithm is the value chosen as a threshold. The details 
of the algorithm are given. In addition to this, samples of the generated 
sequences are also given. 
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APPENDIX A 

Samples of the Generated Skolem Sequences 

1) Regular Skolem sequence of order 20 

2) Regular Skolem sequence of order 40 

3) Regular Skolem sequence of order 52 
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4) Regular Skolem sequence of order 64 

5) Regular Skolem sequence of order 84 




