Partial order Relation

- Equivalence relation "groups" the elements
- Partial order relation "orders" the elements

Denote a partial order by \prec, so $a<b$ means $(a, b) \in R$ $\equiv t_{0}=$ "is the same as" $<$ to $<$

1. Transitive. (as before)
2. Antisymmetric. $\forall a, b \in S,(a<b \wedge b<a) \Rightarrow a=b$

3 . \prec could be reflexive or not.
Example: $<$ on \mathbb{R}, \leqslant on \mathbb{R}
(not reflexive) (reflexive)

If S is finite, then S admits a minimum

$$
\exists e \in S, \quad \forall x \in S, \quad x \neq e \Rightarrow x \nprec e
$$

proof: Suppose e does not exist, I can find an infinite sequence

$$
a_{1}>a_{2}>a_{3} \cdots \text { where } a_{i} \neq a_{i+1}
$$

Since S is finite, we must cycle

$$
\begin{aligned}
& \text { (transitivity) } \\
& a_{i}>\cdots>a_{j}>\cdots>a_{i}
\end{aligned}
$$

$a_{j}<a_{i}$
$a_{i}<a_{j}$$\Rightarrow$ contradiction! (not antisymmetric)

Example: $S=\{a, b, c\}$

$$
P(s)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Relation: $X<Y \Leftrightarrow X$ is a proper subset of Y
Transitive. $x \subset y \wedge y \subset Z \Rightarrow x \subset Z$
Antispormetry. $(x \subset Y \wedge Y \subset X) \Rightarrow X=Y$
min

"Hesse Diagram."
All edges that can be inferred by transitivity are omitted.

Example: $(a, b) \prec(c, d) \Leftrightarrow(a<c) \vee(a=c \wedge b<d)$
Exercice: Prove this is a partial order relation.
Transitive: $\quad(a, b)<(c, d)$
$(c, d) \prec(e, f)$

1) $a<c \wedge c<e \Rightarrow a<e$
2) $a<c \wedge c=e \Rightarrow a<e$
3) $a=c \wedge c<e \Rightarrow a<e$
4) $(a=c \wedge b<d) \wedge(c=e \wedge d<f) \Rightarrow a=e \wedge b<\rho$

Therefore $(a, b) \prec(e, f)$

$$
(a, b) \prec(c, d) \Leftrightarrow(a<c) \vee(a=c \wedge b<d)
$$

Antisymmetry.

$$
\begin{aligned}
& (a, b)<(c, d) \\
& (c, d)<(a, b)
\end{aligned}<\text { can't happen simultaneovsly }
$$

1) $a<c \wedge c<a \quad X$
2) $a<c \wedge c=a \quad x$
3) $a=c \wedge c<a \quad x$
4) $b<d \wedge d<b \quad x$

Note: In general, to prove antisymmetry, prove either: $x<y \wedge y<x \Rightarrow x=y$
or: $x<y \wedge y<x$ is false

Consider the following program in pseudocode where $x=\{\ldots\}$ assigns x a value from the set, and $(x, y)=(\ldots, \ldots)$ simultaneously assigns x and y their values:

```
(x,y,z)=({1,\ldots,n},{1,\ldots,n},{1,\ldots,n})
while x>0 and y>0 and z>0
    control={1,2,3}
    if control==1 then
        (x,y,z)=(x+1,y-1,z-1)
    else
    if control==2 then
        (x,y,z)=(x-1,y+1,z-1)
    else
        (z,y,z)=(x-1,y-1,z+1)
```

$x+y+z$ decreases
by 1 each iteration.

It is typical to prove that a program terminates by finding a quantity that is always decreasing. In the above program, obviously $x+y+z$ decreases by 1 after every iteration. Therefore, one of x, y, or z will eventually reach zero and the program will terminate. However, it is not always possible to find a decreasing quantity, like in the following program:

$$
\begin{aligned}
& (x, y, z)=(\{1, \ldots, n\},\{1, \ldots, n\},\{1, \ldots, n\}) \\
& \text { while } x>0 \text { and } y>0 \text { and } z>0 \\
& \text { control=\{1,2\} } \\
& \text { if control==1 then In each iteration } \\
& x=\{x, \ldots, n\} \quad \text { either } z \text { decreases, } \\
& \begin{array}{l}
y=\{y, \ldots, n\} \quad \text { or } z \text { repairs the samuel } \\
z=z-1
\end{array} \\
& \text { else } \\
& y=\{y, \ldots, n\} \quad \text { Look at }(z, x) \\
& \mathrm{x}=\mathrm{x}-1
\end{aligned}
$$

let z_{i}, x_{i} be values of z and x in iteration i

$$
\left(z_{i}, x_{i}\right) \prec\left(z_{j}, x_{j}\right) \Leftrightarrow z_{i}<z_{j} \vee\left(z_{i}=z_{j} \wedge x_{i}<x_{j}\right)
$$

Iteration i v.s Iteration $(i+1)$

$$
\left(z_{i+1}, x_{i+1}\right) \prec\left(z_{i}, x_{i}\right)
$$

because either $z_{i+1}<z_{i}$ or

$$
z_{i+1}=z_{i} \wedge x_{i+1}<x_{i}
$$

Finite set of possible tuples, every partial order relation on a finite set has a "minimum", we can't decrease (z, x) indefinitely. Program musist stop.

