Primes
A prime number p is a positive integer that has exactly 2 divisors, 1 and p

Facts about primes:

- Every $n \in \mathbb{N}$ is the product of primes.
- Prime factorization is UNIQUE. (proof: read clop. 7) [Fundamental Theorem of aritumetics]

$$
\begin{aligned}
& \text { - } p|a b \Rightarrow p| a \vee p \mid b \\
& \text { - } p|b \wedge p \nmid a \Rightarrow p| \frac{b}{a}\left(\frac{b}{a}=k \in \mathbb{N}\right)
\end{aligned}
$$

$$
\text { - } p|a b \Rightarrow p| a \vee p \mid b
$$

Proof: $\quad p \mid a b \Rightarrow a b=m p$
If we factor a and b into primes, p must show up by uniqueness of prime factorization.

$$
\begin{aligned}
& \Rightarrow p|a \vee p| b \\
& \text { - } p|b \wedge p \nmid a \Rightarrow p| \frac{b}{a} \quad\left(\frac{b}{a}=k \in \mathbb{N}\right)
\end{aligned}
$$

proof: $\left.\frac{b}{a}=k \Rightarrow p|a k \Rightarrow \underbrace{p \mid a}_{\text {false }} \vee p| k \Rightarrow p \right\rvert\, k$.

- some other properties can be found in chop. 7 .

Fermat Theorem
p prime $\wedge p \not p a \Longrightarrow a^{p-1} \equiv 1(\bmod p)$

- $p \nmid a \Rightarrow \operatorname{gcd}(a, p)=1$
- Consider set

So, $a \cdot(2 a) \cdot(3 a) \cdot(4 a) \cdots \cdot[(p-1) a] \equiv 1 \cdot 2 \cdot 3 \cdots(p-1)=(p-1)!$

$$
a^{p-1} \cdot(p-1)!\equiv(p-1)!(\operatorname{mad} p)
$$

- Now ($p-1$)! and p are co-prime: $D_{p}=\{1, p\}$ and $p \nmid(p-1)$! because p can't divide any $x \in\{1, \ldots, p-1\}$ So $(p-1)!$ has an inverse $\bmod p \Rightarrow a^{p-1} \equiv 1(\bmod p)$

Strengthen:

$$
p \text { prime } \Longleftrightarrow \forall a \in\{1, \ldots, p-1\}, a^{p-1} \equiv 1(\bmod p)
$$

Idea: To check if a number n is paine, make sure $a^{n-1} \equiv 1(\bmod n)$ for all $a<n$.
Not better than checking $\{1, \ldots, n-1\}$ for divisors!
But it turns out, it has good random behavior:
repeat 100 times

- pick random $a<n$
- if $a^{n-1} \neq 1(\bmod n)$
return true.
return false (n is composite)
Problem: n might be composite and we still return tue because we did not pick the "good" $a: a^{n-1} \neq \mid \bmod n$

For most composites, the probability of picking a "bad" a is $\leqslant \frac{1}{2}$ (see chip. 7). Therefore, the prob. of making wrong decision $\leqslant\left(\frac{1}{2}\right)^{100}$
Other Problems

- a^{n-1} requires $(n-1)$ multiplication
- a^{n-1} is HUGE!

Repeated squaring:

$$
a^{b}= \begin{cases}1 & b=0 \\ a \cdot a^{b-1} & b \text { odd } \\ {\left[a^{b / 2}\right]^{2}} & b \text { even } \quad \text { [save ult.] }\end{cases}
$$

Combine this with competing everything modulon on the fly.

Example: $a=2, n=30$
Need to find $a^{n-1}=2^{29}$

Cryptography
Assume every message is a_{n} integer $x<n$.
To send x to person A, send $x^{e} \bmod n$ where e and n are advertized by A
private public key
Key
(see next slide)
Fact 1: It's hard to factor n into primes, so it's hard to discover p and q
Fact 2: Given $y=x^{e} \bmod n$, it's hard to figure out x.

Person A also has: $\operatorname{ged}(e,(p-1)(q-1))=1$
so there exists d such that

$$
e d \equiv 1(\bmod (p-1)(q-1))
$$

d can be easily found by A (how?) but not by others.
cain: $y^{\alpha} \bmod n=x$

$$
\begin{aligned}
y^{d} \equiv\left(x^{e}\right)^{d} & \equiv x^{e d} \equiv x^{(p-1)(q-1)+1} \equiv x \cdot\left(x^{q-1}\right)^{p-1} \\
\cdot p \mid x & \Rightarrow y^{d} \equiv x \equiv 0(\bmod p) \\
\cdot p \nmid x & \Rightarrow p \nmid x^{q-1} \Rightarrow\left(x^{q-1}\right)^{p-1} \equiv 1(\bmod p) \text { [Fermat] } \\
& \Rightarrow y^{d} \equiv x(\bmod p)
\end{aligned}
$$

$$
\begin{aligned}
y^{d} \equiv x(\bmod p) & \Rightarrow p \mid y^{d}-x \\
y^{d} \equiv x(\bmod q) & \Rightarrow q \mid y^{d}-x \\
n & =p q \mid y^{d}-x \quad(p, q \text { both prime factors })
\end{aligned}
$$

Therefore $y^{d} \equiv x(\bmod p q)$

$$
y^{d} \equiv x(\bmod n)
$$

