Graph Theory

- A graph consists of a set of vertices V and a set of edges $E \subset V_{x} V$.
- It represents pairwise relationship, typically illustrated using dots or circles for vertices and lines (not necessarily straight) for edges.
Example:

We will focus on undirected graphs. Edges have no direction. (or you can think that (u, v) and (v, u) are both in E)

What do we know?

- Degree of a vertex: \# edges touching it.
- $\sum_{v \in V} d_{v}=2|E|=2 x$ edges (HandshaKe Lemma)
- Planar graphs: a graph we can draw in the plane without edges crossing
Euler formula: $v-e+f=2$

$$
v=|v|, e=|E|, f=\# \text { faces }
$$

Example

$$
\left.\begin{array}{l}
v=5 \\
e=5 \\
f=2
\end{array}\right\} \text { verify }
$$

A path in the graph is a sequence of vertices connected by edges
$v_{1}, v_{2}, \ldots, v_{n}$ (path from v_{1} to v_{n})
$-V_{i} \neq V_{j}$

- $\left(v_{i}, v_{i+1}\right) \in E$
- All edges are distinct.

Exception: $v_{1}=v_{n}$, path is called a cycle.
Why A BA is not a cycle? (same edge)
A walk is a path where vertices and edges can repeat, and if $V_{1}=V_{n}$, we call it closed walk.

The path relation is an equivalence relation on V $u m \Leftrightarrow$ miser is a path from u to v

- Reflexive: $u m>u$ (Empty path)
- Symmetric: $u m b \Longleftrightarrow v_{m}>u$ (undirected graph)
- Transitive: $u m>v \wedge v n>w \Rightarrow u m>w$ (tricky but true)

(there is a walk from u to w)
Extrat a path from the valk.

First vertex that repeats

- Every equivalace relation defines classes of equiralance
- What are the classes of equivalence in the graph.
- We call them the connected components of the graph
$v=18$
$e=18$

$$
\begin{aligned}
& f=4 \\
& c=3
\end{aligned}
$$

This graph has 3 connected components $c=3$
A graph with $c=1$ is called a connected graph.
Update: Euler formula: $v-e+f=c+1$ (planar graphs)

Trees
A tree is a connected graph with no cycles.

Alternative definitions:

1. connected \& cycle-frce
2. connected but removing any edge disconnects it. [minimally connected]
3. Cycle-free but adding ant edge creates a cycle [maximally cycle -free]

$$
\text { Tree } \Rightarrow|E|=|V|-1
$$

$$
\text { Tree } \Rightarrow|E|=|V|-1
$$

Lemma: Every tree with $|V| \geqslant 2$ must have at least one vertex with degree 1.
proof: Induction on $n=|V|$
Base case: $n=1$

$$
\text { - } \quad\left|\begin{array}{ll}
|E|=0 \\
& |V|=1
\end{array} \quad\right| E|=|V|-1
$$

Inductive step: A thee with K vertices has

$$
|E|=K-1
$$

Consider a tree with $k+1$ varices, it must have a vatex with degree 1 delete this vertex of degree 1 together with its edge.
a tree with
 K vertices has $|E|=K-1$ adding back the vatex and its edge maintains the equality.

Proving euler's formula for $c=1$ (connected graph)

$$
v-e+f=2
$$

Induction of \# edges.
Base Care: $|E|=0 \quad|V|=1$

$$
v-e+f=1-0+1=2 \checkmark
$$

Inductive step: Assume true for k, consider $k+1$ edges

- If graph is tree, then: $e=k+1$

$$
\begin{gathered}
v=k+2 \\
f=1 \\
(k+2)-(k+1)+1=2
\end{gathered}
$$

- If not, then there is a cycle. Delete an edge on the cycle. Now we have a connected graph with k edges, it must have $v-e+f=2$.

Deleting (u, v) also merges two faces.
So when we add (u, v) back, we get $e+1$ edges and $f+1$ faces, making $v-(e+1)+(f+1)=2$.

Which graphs are not planar?
First, define degree of a face to be the number of edges on a closed walk of its boundary

$$
\begin{gathered}
5+4+9=18 \\
e=9 \\
\sum_{f} d_{f}=2 e
\end{gathered}
$$

$k_{3,3}$ is not planar

every face has at least 4 edges

$$
\begin{gathered}
4 f \leqslant \sum_{F} d_{F}=2 e=18 \\
v=6, e=9 \Rightarrow f=5 \text {, but } 4 \times 5>18
\end{gathered}
$$

K_{5} is not planar

every face has at least 3 edges

$$
\begin{gathered}
3 f \leqslant \sum_{F} d_{F}=2 e=20 \\
v=5, e=10 \Rightarrow f=7, \text { but } 3 \times 7>20
\end{gathered}
$$

Every non-planar graph has $K_{3,3}$ or K_{5} as a "basic shape"

