Which graphs are not planar?
First, define degree of a face to be the number of edges on a closed walk of its boundary

$$
\begin{gathered}
5+4+9=18 \\
e=9 \\
\sum_{F} d_{F}=2 e
\end{gathered}
$$

$k_{3,3}$ is not planar

every face has at least 4 edges

$$
\begin{gathered}
4 f \leqslant \sum_{F} d_{F}=2 e=18 \\
v=6, e=9 \Rightarrow f=5 \text {, but } 4 \times 5>18
\end{gathered}
$$

K_{5} is not planar

every face has at least 3 edges

$$
\begin{gathered}
3 f \leqslant \sum_{F} d_{F}=2 e=20 \\
v=5, e=10 \Rightarrow f=7, \text { but } 3 \times 7>20
\end{gathered}
$$

Every non-planar graph has $K_{3,3}$ or K_{5} as a "basic shape"

Subdivision of a graph

planar \Leftrightarrow No subdivision of $k_{3,3}$ or k_{5}

Another interesting result:
Every planar graph with $v>2$ satisfies

$$
e \leq 3 v-6
$$

proof: Since every face has degree at least 3 (because $v>2$) we have $3 f \leqslant 2 e \Rightarrow f \leqslant \frac{2 e}{3}$
but $e=v+f-2 \leqslant v+\frac{2 e}{3}-2 \Rightarrow e \leqslant 3 v-6$
Average degree

$$
\sum_{v \in V} d v=2 e \leqslant 6 v-12
$$

$\frac{\sum d v}{v} \leqslant 6-\frac{12}{v}<6$ (There must be a vertex v such that $d v \leqslant 5)$

Number of Trees
Given n vertices, how many trees can we make? It depends! Are these the Same ?

Labeled trees: Two trees are the same if they have the same set of edges

Unlabeled trees: Two trees are the same if there exists a bijection between their vertices that preserves the edges.

$$
\begin{aligned}
& f(1)=5 \quad f(2)=3 \quad f(3)=4 \quad f(4)=1 \quad f(5)=2 \\
& (u, v) \in E \Longleftrightarrow(f(u), f(v)) \in E^{\prime}
\end{aligned}
$$

Cayley's Formula:
Number of labeled trees on n vertices is n^{n-2} Chapter 8 contains 3 proofs

1) Prufer code
2) Inclusion -Exclusion
3) A counting argument
