Which graphs are not planar?

First, define degree of a face to be the number of edges on a closed walk of its boundary

$$\sum_{\mathbf{F}} d_{\mathbf{F}} = 2e$$

K3,3 is not planar

every face has at least 4 edges $4f \leqslant \sum_{F} d_{F} = 2e = 18$ $V=6, e=9 \Rightarrow f=5, \text{ but } 4x5 > 18$

Ks is not planar

every face has at least 3 edges $3f \leqslant \sum_{F} d_{F} = 2e = 20$ V=5, $e=10 \Longrightarrow J=7$, but 3x7>20

Every non-planar graph has K3,3 or K5 as a "basic shape"

subdivision of a graph

planar <>> No subdivision
of K3,3 or Ks

Another interesting result:

Every planar graph with v>2 satisfies $e \leq 3v-6$

proof: Since every face has degree at least 3 (because v > 2)

we have $3f \le 2e \implies f \le \frac{2e}{3}$ but $e = v + f - 2 \le v + \frac{2e}{3} - 2 \implies e \le 3v - 6$

Average degree

 $\sum_{v \in V} dv = 2e \leqslant 6v - 12$

 $\frac{\sum dv}{v}$ < 6 - $\frac{12}{v}$ < 6 (There must be a vertex v such that $dv \leq 5$)

Labeled trees: Two trees are the same if they have the same set of edges

Unlabeled trees: Two trees are the same if there exists a dijection between their vertices that preserves the edges.

$$f(1) = 5$$
 $f(2) = 3$ $f(3) = 4$ $f(4) = 1$ $f(5) = 2$
 $(u,v) \in E \iff (f(u), f(v)) \in E'$

Cayley's Formula:

Number of labeled trees on n vertices is nⁿ⁻²

Chapter 8 contains 3 proofs

- 1) Prufer code
- 2) Inclusion-Exclusion
- 3) A Counting argument