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Abstract—In mobile edge computing (MEC) systems, offload-
ing real-time and compute-intensive application tasks to re-
mote edge servers is performed to relieve energy-constrained
mobile devices of energy consuming computations. However,
such practice often becomes counter-productive as transmission
power requirements to offload such real-time tasks through
wireless can make the mobile devices spend significant energy.
In this paper, we propose an energy-efficient task offloading
scheme for real-time and compute-intensive applications that
optimizes energy consumption at mobile devices without violating
such applications’ strict latency requirements. In particular,
for local energy savings at the mobile devices, we propose
a Computation and Power Optimization (CPO) algorithm for
optimal job partitioning. Then we propose a multi-device and
multi-server task Joint Task Offloading Game (JTOG) algorithm
in order to minimize the energy consumption for all mobile
devices generating multiple tasks. Finally, using a realistic and
detailed simulation, we prove that a tractable Nash Equilibrium
always exists for the game that optimizes the energy savings
of all mobile devices. We also show that the proposed JTOG
algorithm performs significantly better than other default full
task offloading schemes in terms of overall energy savings.

Index Terms—Energy efficiency, task offloading, mobile edge
systems, real-time applications, directed acyclic graphs, Nash
equilibrium.

I. INTRODUCTION

With real-time mobile applications becoming increasingly
compute-intensive for many mission-critical use cases, the
energy capacity of embedded mobile end-devices are proving
to be insufficient to handle all in-device computation. Mobile
edge computing (MEC) [1], [2] allows mobile devices to of-
fload some or all of such real-time and compute-intensive tasks
to edge servers as it brings cloud-scale compute resources
closer to the mobile devices. Thus intuitively, in order to
preserve the limited energy of mobile devices, all computing
tasks should be offloaded to edge servers.

In many real-time application use-cases [3], such offloading
often uses wireless transmission for data transfer between mo-
bile devices and edge servers. However, inherent fluctuations
in wireless channel quality caused by phenomenons such as,
interference, path loss, shadowing, and fading result in varying
end-to-end data rate. This in turn adds to the transmission cost
of task offloading to edge servers that eventually increases
the overall energy expenditure of mobile devices. Thus in
energy-aware edge systems, data transmission costs of task
offloading can often outweigh the energy preservation benefits
of remote computation, which entirely defeats the purpose of
task offloading. Therefore, an alternative approach of partial
task offloading can be beneficial that seeks to reduce the size
of input data by running certain lightweight pre-processing
jobs at the mobile devices. The intermediate data can then
be offloaded to edge servers for further processing, thereby
reducing the transmission cost at mobile devices.

In this paper, we model such partial task offloading problem
in mobile edge system under varying task Directed Acyclic
Graph (DAG) partition models and study the in-device energy
efficiency problem. In particular, we aim to find a task offload
strategy that makes partial task offload decisions with edge
server selection, as well as computes transmission power and
computation speed configurations to satisfy real-time nature of
the applications. For local energy savings at mobile devices,
we propose a Computation and Power Optimization (CPO)
algorithm for optimal job partitioning. The algorithm selects
the best transmission power and computation speed that satisfy
the task latency requirements. At the same time, in order
to achieve a Nash equilibrium (NE) in edge server selection
problem, we prove that the multi-device and multi-server task
offloading game is a potential game and propose a Joint Task
Offloading Game (JTOG) algorithm for strategy updating.
Using a realistic and detailed simulation, we show how the
JTOG algorithm optimizes the overall energy consumption and
always leads to a NE within a reasonable number of iterations.
We also show that the JTOG algorithm intelligently selects
the optimal DAG partition model that is superior in terms
of overall energy savings to other default strategies such as,
greedy fully remote tasks offloading scheme and fully local
task computation scheme.

The rest of the paper is organized as follows. Section II
presents the related work. Section III discusses the system
model. Section IV proposes the optimization problem of
energy efficient task computation model. Section V presents
the joint task offloading game. Section VI discusses simulation
results. Section VII concludes the paper.

II. RELATED WORK

Mobile edge systems provide the option to offload some or
all of the computationally intensive application tasks to edge
computing servers, often using last-mile wireless transmission.
This approach releases the limited computing resources at
hand-held mobile devices for other small applications and
at the same time reduces excess energy consumption at the
devices. However, due to the complexity of the wireless
transmission, the heterogeneity of computation-intensive appli-
cation tasks in terms of their resource and energy requirements
and real-time nature, edge server selection and subsequent
resource allocation remain challenging research problems.

The multi-device mobile edge systems have been exten-
sively studied in [1], [2], [4], [5]. In latency-aware platform
LAVEA [1], authors use DAGs to represent the task execution
sequence where job dependency has been considered. This
work aims to find the optimal task graph partition with the
purpose of minimizing end-to-end latency. An energy-efficient
offloading framework has been studied in [2] where the authors



applied a Sporadic Task model and each task is divided into
local-only stages and offloadable stages. Compared to these
works, authors in methods, such as [4], [5] proposed partial
task offloading schemes with a concurrent execution model
without job dependency. Authors in [4] studied joint com-
putation and resource allocation policy under time-division
and frequency-division settings driven by a offloading priority
function. Authors in [5] investigated the user cooperation in
mobile edge systems with helper nodes which work as decode-
and-forward (DF) relay for cooperative communication.

In [8], [9], [10], the multi-device and multi-server edge
systems have been studied. Authors in [8] proposed solutions
to resource allocation and task placement problems with
software-defined ultra dense network (SD-UDN) architecture.
In [9], the energy efficiency problem in edge systems is decou-
pled into two: optimal power and sub-carrier allocation, and
optimal task offloading strategy. The authors use Hungarian
method to find the optimal offloading solution. Compared
to [8] and [9], authors in [10] consider energy consumption
of edge servers in terms of communication and computation
power. However, none of the aforementioned works have
considered partial offloading decision making and energy-
efficient resource allocation problems together in multi-device
and multi-server edge systems.

III. SYSTEM MODEL

In this section, we will describe the mobile edge system
model we used for this work. We define a mobile edge
system containing N = {1, 2, ..., N} mobile devices (users)
and K = {1, 2, ...,K} edge servers, both with heterogeneous
computation capacities. We describe the real-time application/-
task offloading decision by mobile device n as an ∈ A

∆
=

{0, 1, 2, ...,K}. More specifically, we define

an =

{
0 if user n executes task locally
k if user n executes task on edge server k

In this paper, we define I{an=k} = 1 as the indicator that the
event {an = k} is true; otherwise I{an=k} = 0. Fig. 1 shows
the overall mobile edge system model where devices offload
all or some of the task jobs to edge servers using wireless
transmission.

A. Application Model
In this paper, we study real-time compute-intensive mobile

applications such as, video processing based on running ma-
chine learning algorithms on raw video data. More specifically,
mobile devices will continuously send video frames to edge
servers for face recognition or object detection with strict
deadline requirements. As shown in Fig. 1 and Fig. 2, we
model the applications as Sporadic Task [6] which has a
Directed Acyclic Graph (DAG) Gn = (Vn, En). The DAG
contains a group of jobs that are executed sequentially. Each
job has a computation requirement denoted by ωn,x (i.e.,
the number of CPU cycles) and will contain multiple stages
with intermediate data (e.g., face location and size, and face
features) as shown in Fig. 2. As part of modeling their mission
criticality, we denote the minimum release period of video
frames and the deadline of DAG execution as Tn and Dn,
respectively.

Fig. 1: System model showing mobile devices with limited
compute and energy resources offloading tasks to edge servers.

Fig. 2: The DAG example of face recognition application

B. DAG Partition Model
The different stages of DAG can be partitioned into two

groups (local-processing jobs and remote-processing jobs)
to achieve specific cost optimization. The remote-processing
jobs cannot be executed until the intermediate data generated
by local-processing jobs are received at the edge server. In
addition, we allow the mobile devices to intelligently select
their task DAG partition model, which is defined as,

(Θn = m) ≡ (Xn,m, Yn,m, Zn,m) ,∀m ∈ {0, 1, ..,Mn} (1)

where Mn is the length of jobs. We describe the accumulated
computation requirement of jobs (i.e. CPU cycles) as Xn,m =
Mn∑

x=m+1
ωn,x and Yn,m =

m∑
x=1

ωn,x at the edge server and at

the mobile device, respectively. We define Zn,m as the size of
intermediate data when 0 < m < Mn or the size of task input
data when m = 0.

C. Communication Model
For our application data transmission (from mobile devices

to edge servers) model, we assume that all edge servers
apply the Orthogonal Frequency Division Multiple Access
(OFDMA) communication [13]. We denote Ck as the set of
sub-channels that can be used for data transmission at the edge
server k. In this paper, we assume that the sub-channel gain
simply depends on the distance between the mobile device and
the edge server, which can be modeled as

hn,k = ‖d‖−s (2)

where ‖d‖ is the distance between the mobile device and
edge server and s is the path loss factor. Thus, the optimal



transmission power and the bit-rate will be equally distributed
on each allocated sub-channel. The aggregated data rate for
task data transmission is computed as,

rkn =

bn,k∑
x=1

W0 log2(1 +
pnh

2
n,k

N0
) = bn,kW0 log2(1 +

pnh
2
n,k

N0
)

(3)
where

bn,k =

⌊
Ck∑N

n=1 I{an=k}

⌋
bn,k is the number of sub-channels assigned to the mobile
device under fair sub-channel allocation. In Eq. (3), pn is the
transmission power of mobile device allocated on a single sub-
channel (i.e. the total power is bn,kpn) and N0 is the white
Gaussian noise. The notations used for the system model and
rest of the paper are summarized in Table I.

TABLE I: Notation used

Symbol Definition

K The set of edge servers
N The set of mobile devices
S The offloading strategy set of mobile devices
pn The transmission power of device n on single sub-channel
fn The CPU speed of device n
fn,k The CPU speed of edge server k for device n
an The offloading decision of device n

Θn(m) The mth DAG partition model of device task n
ωn,x The computation requirement of xth job of device task n
Xn,m The accumulated computation requirements of remote jobs
Yn,m The accumulated computation requirements of local jobs
Zn,m The size of transmitted data
Ck The number of sub-channels available to edge server k
bn,k The number of sub-channels allocated to device n
hn,k The sub-channel gain between device n and edge server k
rn,k The achievable data rate between device n and edge server k
αn,k The data transmission time of device task n
βn,k The remote computation time of device task n
Dn, Tn The deadline and release period of device task n

IV. ENERGY EFFICIENT TASK COMPUTATION

In this section, we formulate and analyze task DAG parti-
tioning problem at mobile devices for transmission power and
computation speed optimization. The energy consumption and
computation model follows methods described in [7] which
allow the devices to adjust their computation speed for the
purpose of energy saving based on Dynamic Voltage Scaling
(DVS) technique.

Remark 1: When a mobile device decides to execute a
task locally (i.e., an = 0 and Θn = Mn signifying both
jobs are processed at the mobile device), the minimal energy
consumption w.r.t. the task deadline can be stated as,

Eln = κ(Xn,m + Yn,m)[
(Xn,m + Yn,m)

Dn
]2 (4)

where κ is an energy consumption coefficient (i.e. J/cycle) [7].
It is evident that a task can be locally executed if and
only if the device’s maximum computation speed satisfies the
constraint,

Xn,m + Yn,m
Dn

≤ fmaxn (5)

Otherwise, the jobs must be offloaded to a edge server and
processed remotely.

A. Adaptive Task Computation
In our model, when I{an=k} = 1, mobile device n decides

to offload part or all of the jobs to the edge server k. We
first define the concept of beneficial task offloading decision
in terms of energy consumption.

Definition 1: A beneficial task offloading (to edge server)
decision should in result less energy consumption compared to
executing all jobs at the mobile device, i.e., the sum of energy
consumed for local computation of part of the task and energy
consumed for transmission of the rest of the task should be
less than Eln.

To minimize the energy consumption, the device needs
to carefully choose DAG partition model Θn and select the
optimal resource configuration: the transmission power pn
(in Watts) and the local computation speed fn (in CPU
cycles/s). We create two auxiliary variables αn,k and βn,k
as the transmission time and the edge server computation
time for a task. By definition, we have Zn,m

def
= αn,kr

k
n and

Xn,m
def
= fn,kβn,k where fn,k is the edge server computation

speed allocated to the device task. Base on Eq. (3), the
transmission power allocated to single sub-channel can be
stated as,

pn = min

{
N0

h2
n,k

g(
Zn,m
αn,k

),
pmaxn

bn,k

}
(6)

where pmaxn is the maximum transmission power and g(x) =

2
( x
bn,kW0

) − 1. According to DVS, the optimal computation
speed at the mobile device should be adjusted to,

fn = min

{[ Yn,m
Dn − αn,k − βn,k

]+

, fmaxn

}
(7)

with fmaxn as the maximum computation speed at the mobile
device.

B. Energy Consumption Problem
To simplify the problem, we redefine the symbol Θ as the

joint computation configuration,

Θn = Θn × {pn} × {fn},∀n ∈ N
which includes the DAG partition model, and the corre-
sponding optimal configuration for transmission power and
computation speed at the mobile device. Based on above
discussion, the overall energy consumption function can be
formulated as,

ξn,k(Θn) = κYn,mf
2
n + bn,kpn

Zn,m
rn,k

= κYn,m[
Yn,m

Dn − αn,k − βn,k
]2 + bn,k

N0

h2
n,k

g(
Zn,m
αn,k

)αn,k

(8)
Thus, the joint optimization of task energy efficient problem
can be stated as,

En,k = min
Θn∈{1,...,Mn}

{
min
αn,k

ξn,k(Θn)

}
, ∀k ∈ K (P1)



s. t.

C1: αn,k ∈ [
Zn,m

bn,kW0 log2(1 +
pmax
n h2

n,k

bn,kN0
)
, Dn − βn,k −

Yn,m
fmaxn

]

C2: En,k < Eln

Such formulation makes (P1) a Mixed-Integer Nonlinear Pro-
gramming (MINLP) problem. The constraint C1 specifies the
limitations in terms of task deadline, maximum transmission
power and computation speed of the mobile device. C2 iden-
tifies the beneficial task offloading decision. It can be easily
proved that the inner objective function Eq (8) is convex w.r.t.
the variable αn,k. Therefore, the optimal solution α∗n,k exists
either at the stationary point or at the minimum or at maximum
boundary of the feasible solution. After the inner problem
is solved, the solution to (P1) can be obtained by iterating
all partition models and selecting the model that provides the
minimal energy consumption.

In this paper, we propose the Computation and Power
Optimization (CPO) Algorithm 1 to calculate the optimal data
transmission time and find the best DAG partition model under
given offloading decision an. The algorithm will run separately
for each task and the step size ε will control the accuracy of
the algorithm.

Algorithm 1: Computation and Power Optimization

1 initial step size ε = 10−3, minimal energy consumption
ξ∗n = +∞

2 for m ∈ {1, 2, ..,Mn} do
3 get αmin and αmax based on constraint C1
4 if αmin > αmax then
5 continue
6 set α = αmin
7 while α ≤ αmax do
8 based on Eq. (8), calculate energy ξn
9 if ξn < ξ∗n then

10 get pn and fn based on Eq. (6) and Eq. (7)
11 Θ∗n ← {m, pn, fn}, ξ∗n ← ξn

12 α = α+ ε · (αmax − αmin)

13 if ξ∗n < Eln then
14 return Θ∗

15 else
16 return ∅

V. TASK OFFLOADING GAME

In this section, we describe the formulation and solution
of task offloading game in order to minimize the energy
consumption at mobile devices. In order to achieve this, we
introduce time variable t as the iteration slot and denote an(t)
as the offloading decision made by device n at tth iteration.
Since the resources are shared among device who have chosen
the same offloading decision (except an(t) = 0), any single
decision update an(t − 1) = k → an(t) = k′ at iteration
t would incur energy consumption overhead to the existing
tasks on the edge server k′, and also release the occupied
resources at the original edge server k. Subsequently, those
changes result in re-optimizing the transmission power and
computation speed of mobile devices; otherwise, such tasks

might fail to meet the deadline and the devices would spend
extra energy from unnecessary computation.

A. Game Formation
Based on the above discussion, we define a two dimension

strategy space of all devices as,

S ∆
= [A,Θ] (9)

where sn(t) = [an(t),Θn(t)] indicates the joint DAG partition
model Θn(t) along with the offloading decision an(t). We also
denote s−n(t) = (s0(t), ..., sn−1(t), sn+1(t), ..., sN (t)) as the
offloading strategies by all other devices except for n. The
energy consumption function for device n can be formulated
as,

ηn(sn(t), s−n(t)) =

{
Eln if I{an(t)=0}
En,k(Θn(t)) if I{an(t)=k}

(10)

We next formulate the multi-device and multi-server task
offloading problem as a strategic game with the energy con-
sumption function ηn. Given s−n(t), each device would like
to choose a ideal strategy sn(t) in order to minimize its own
energy consumption (in a selfish manner), that is ∀n ∈ N ,

min
sn(t)∈S

ηn(sn(t), s−n(t)) (11)

B. Nash Equilibrium and Convergence
Here, we introduce the concept of Nash equilibrium for the

proposed task offloading game. We assume that the mobile
devices are selfish in nature and are only concerned about
minimizing their own energy consumption.

Definition 2: A strategy profile S∗ = {s∗1, s∗2, ..., s∗N} is a
Nash equilibrium (NE) of multi-device and multi-server task
offloading game, if at the equilibrium S∗, no player (device)
can further reduce its energy consumption by unilaterally
altering its strategy, i.e.,

ηn(s∗n, s
∗
−n) ≤ ηn(sn, s

∗
−n),∀sn ∈ {1, 2, ...,K}, n ∈ N

Theorem 1: The multi-device and multi-server task offload-
ing game with a global cost function φ(S) defined in Eq. (12)
is a potential game which always has a NE.

φ(S) =

N∑
n=1

κYn,mf
2
n + pn

Zn,m

W0 log2(1 +
pnh2

n,k

N0
)

(12)

Proof 1: Let us consider the update sn(t − 1) 6= sn(t) for
n. Such motivation can be stated as,

η(sn(t− 1), s−n(t− 1)) > η(sn(t), s−n(t− 1))

Base on Eqs. (3) and (8), the energy consumption is inde-
pendent of sub-channel allocation i.e., the strategy chosen by
device n is independent of the transmission power and compu-
tation speed of other devices. Thus, the energy consumption of
all other devices will remain unchanged at that moment. Thus,
it is evident that in such a scenario the following inequality
will also be satisfied.

φ(sn(t− 1), s−n(t− 1)) > φ(sn(t), s−n(t− 1))

�



This shows that the multi-device and multi-server task
offloading game using the potential function (given in Eq (12))
is a potential game. Therefore, the game will always have a
NE S∗ and the finite improvement property (FIP).

C. Algorithm
Based on the FIP of the proposed task offloading game, we

select the best strategy to find the improvement path that leads
to a NE [11], [12]. We develop a Joint Task Offloading Game
(JTOG) Algorithm 2 to perform strategy updates.

In JTOG, the strategies of all other devices s−n(t) will
be given at each iteration. Each device separately uses CPO
algorithm (Algorithm 1) to solve its own energy minimization
problem (11) by iterating for all edge servers and sends
the best strategy sn(t) = [an(t),Θn(t)] as a request to the
central edge controller to compete for an update opportunity.
However, only one update request is accepted at each iteration
among devices who want to change their offloading decisions
(sn(t − 1) 6= sn(t)). The algorithm terminates when there is
no new update request.

Algorithm 2: Joint Task Offloading Game
1 initial S∗ = [0, ∅], t = 0 and max iteration tM
2 all devices select local computation model based on

Eq. (4)
3 while t < tM do
4 request = ∅
5 for each device n ∈ N do
6 solve sn(t) = argmin

sn(t)∈S
ηn(sn(t), s−n(t))

7 if sn(t− 1) 6= sn(t) then
8 request.add(sn(t))

9 if request 6= ∅ then
10 randomly accept one request : s∗n ← sn(t)
11 else
12 break

13 return S∗

VI. SIMULATION RESULTS

We evaluate the performance of the proposed multi-device
and multi-server task offloading game using a simple yet
realistic simulation. The number of sub-channels for each
edge server is set to [20, 50] and the bandwidth of each sub-
channel is 1 MHz. The computation capacity of mobile devices
and the computation capacity allocated from edge servers are
[1.75, 2.5] GHz and [1.25, 2.75] GHz, respectively. The sub-
channel gains are modeled based on [4] and the white Gaussian
noise N0 is set to 10−9. The energy consumption coefficient
is set to 10−28 Joules/cycle. The compute-intensive tasks are
generated by DAGs with [2−4] jobs where the job complexity
varies between [15, 150] cycle/bit. The size of the task input
data and the intermediate data are set to [0.35, 1.5] MB. The
deadline and release period of tasks are set to [0.5, 1] seconds.

A. Existence of Nash Equilibrium
Here we demonstrate how the process of joint task offload-

ing game terminates after few iterations, beyond which no

mobile device can further reduce its energy consumption by
unilaterally changing its strategy; i.e., all devices satisfy their
final task offloading strategies at NE and have no incentive to
deviate from their strategies.

Fig. 3: The energy consumption of task offloading game with
15 tasks and 3 edge servers.

Fig. 3 shows that all devices select local computation
model (i.e., an(0) = 0) at the very beginning of the game.
Based on FIP, the improvement path shown in the figure that
demonstrates the strategy update sequence carried out by the
best response strategy leading to a NE after 40 iterations.
In the simulation of a fixed number of edge servers, we
found that the number of required iterations for achieving a
NE increases almost linearly with the number of tasks. As
shown in Fig. 4, the proposed task offloading game using
the proposed parameters obtains a NE after at most 3N
iterations. Therefore, the convergence of the JTOG algorithm
(Algorithm 2) is fast and guaranteed.

Fig. 4: The maximum iterations at NE for task offloading game
with 3 to 6 edge servers and different number of tasks.

B. Performance Comparison
Next, we compare the performance of our proposed joint

task offloading game against two other strategies: a) strategy
where all jobs are executed at the edge server (EDGE ONLY),
i.e., whenever a device chooses an(t) > 0, Θn(0) is selected
as the DAG partition model; and b) strategy with local only
computation (LOCAL ONLY), where mobile devices perform
all jobs locally. The performance metric is simply the energy
savings of all the devices combined which is expressed as,

1−
N∑
n=1

ηn(sn, s−n)/

N∑
n=1

Eln (13)



Fig. 5: The energy consumption of task offloading game with
3 edge servers and different number of tasks.

Fig. 5 shows the overall energy consumption over different
number of tasks with fixed amount of network and com-
putation resources. The figure shows that in comparison to
LOCAL ONLY, JTOG performs (using Eq. (13)) significantly
better in terms of overall energy consumption. However, the
performance improvement decreases from 80% (12 tasks) to
60% (27 tasks) when there are more tasks compete for network
and computation resources.

In contrast, Fig. 6 analyzes performance comparison for
a given number of tasks against different number of sub-
channels. Whereas, Fig. 7 shows the performance comparison
against varying computation speed at the edge servers with a
given number of tasks. From both figures, it is evident that
the performance improvement increases when more resources
(i.e., either network, or compute or both) are introduced into
the system. However, due the nature of energy consumption
function, the speed of such improvement reduces as more sub-
channels are introduced as shown in Fig. 6.

At the same time, both Fig. 6 and Fig. 7 show that the JTOG
and EDGE ONLY schemes can save considerable energy
consumption at the NE point in comparison to LOCAL ONLY.
However, JTOG saves more energy (in some cases twice as
much) compared to full offloading strategy EDGE ONLY.
The reason being that JTOG adaptively selects the DAG
partition model Θn which ensures further energy reduction.
This signifies that in certain situations running lightweight jobs
at the mobile device (in order to get smaller intermediate data)
before processing at the edge can conserve more energy than
offloading the entire data to the edge for processing.

Fig. 6: The energy consumption of task offloading game with
15 mobile users and 3 edge servers against different number
of sub-channels.

Fig. 7: The energy consumption of task offloading game with
15 mobile users and 3 edge servers against different edge
server computation capacities.

VII. CONCLUSIONS

In this paper, we proposed a multi-device and multi-server
task offloading game for edge systems running real-time
compute-intensive applications. Through rigorous analysis, we
showed that the proposed Joint Task Offloading Game (JTOG)
algorithm always optimizes the energy saving for all mobile
devices at a tractable Nash Equilibrium. Th results from a
realistic simulation show that the proposed JTOG algorithm
conserves more energy than traditionally intuitive schemes
where all data are offlaoded to remote edge servers for
processing.
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