
Reinforcement Learning-driven Data-intensive
Workflow Scheduling for Volunteer Edge-Cloud

Motahare Mounesan∗, Mauro Lemus$, Hemanth Yeddulapalli$, Prasad Calyam$, Saptarshi Debroy∗
∗City University of New York, $University of Missouri-Columbia

Emails: mmounesan@gradcenter.cuny.edu, lemusm@umsystem.edu, hygw7@missouri.edu, calyamp@missouri.edu,
saptarshi.debroy@hunter.cuny.edu

Abstract—In recent times, Volunteer Edge-Cloud (VEC)
has gained traction as a cost-effective, community computing
paradigm to support data-intensive scientific workflows. However,
due to the highly distributed and heterogeneous nature of VEC
resources, centralized workflow task scheduling remains a chal-
lenge. In this paper, we propose a Reinforcement Learning (RL)-
driven data-intensive scientific workflow scheduling approach
that takes into consideration: i) workflow requirements, ii) VEC
resources’ preference on workflows, and iii) diverse VEC resource
policies, to ensure robust resource allocation. We formulate
the long-term average performance optimization problem as a
Markov Decision Process, which is solved using an event-based
Asynchronous Advantage Actor-Critic based RL approach. Our
extensive simulations and testbed implementations demonstrate
our approach’s benefits over popular baseline strategies in
terms of workflow requirement satisfaction, VEC preference
satisfaction, and available VEC resource utilization.

Index Terms—volunteer edge-cloud computing, workflow
scheduling, resource management, reinforcement learning.

I. INTRODUCTION

Data-intensive scientific workflows in areas characterized by

considerable on-demand resource needs and stringent security

requirements (e.g., bioinformatics, high-energy physics, and

healthcare), have traditionally been hosted by cloud environ-

ments, thanks to the availability of resources, advanced se-

curity protocols, and performance assurances through Service

Level Agreements (SLAs) [1] offered by such environments.

However, processing such data- and resource-intensive work-

loads at cloud scale incurs substantial costs. To address this,

in recent times, “volunteer edge-cloud” (VEC) computing has

emerged as an alternative [2], [3], harnessing distributed com-

puting to provide cost-effective resources [4] for on-demand

processing. Figure 1 illustrates an exemplary VEC environ-

ment that leverages the collective computational resources of

VEC nodes (i.e., VNs) to process data-intensive workflows;

thereby shifting the processing from centralized cloud infras-

tructures to the edge, where resources are more affordable and

abundant, albeit diverse and geographically distributed. These

VNs can range from small devices (e.g., IoTs) to large systems

(e.g., servers) that are owned and operated by individuals,

laboratories, or organizations who willingly contribute them

for collaborative computing. A central scheduler is designated

to assign workflow tasks to available VNs that can satisfy

This material is partially supported by the National Science Foundation
under Award Numbers: OAC-2232889 and CNS-1943338.

Fig. 1: Data-intensive workflow scheduling within a VEC environment

workflows’ quality of service (QoS) and security requirements

without violating the diverse VEC resource policies.

While traditional cloud environments provide theoretically

unlimited resources to fulfill workflow requirements within

specific SLA bounds, VNs within a VEC environment, due

to their heterogeneity in terms of resource capacity, intermit-

tent availability, and diverse usage policies, may not always

guarantee strict requirement satisfaction. Additionally, VNs

belonging to specific research labs/facilities within institution-

s/universities form isolated VEC clusters, while being part of

the same VEC environment. These clusters may prefer to host

specific workflows or users (generating such workflows) in

their VNs due to a variety of preferential reasons, such as

workflow data type, reputation of the workflow users, and

history of prior collaborations between the data and resource

sites. Thus, unlike in cloud environments, task scheduling

in VEC environments needs to not only satisfy workflow

demands, but also accommodate VNs’ preferences. This is

on top of optimizing task execution and efficiently managing

resource scalability like any other task scheduling strategy.

Most related literature within VEC ecosystem focuses on

establishing trust between the resource providers and users [5],

[6], while mostly using generic task scheduling. Therefore,

management of workflow tasks, resource assignment, and

ensuring workflow requirement satisfaction, while honoring

79

2024 IEEE 8th International Conference on Fog and Edge Computing (ICFEC)

2694-3255/24/$31.00 ©2024 IEEE
DOI 10.1109/ICFEC61590.2024.00016

20
24

 IE
EE

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

og
 a

nd
 E

dg
e

C
om

pu
tin

g
(I

C
FE

C
) |

 9
79

-8
-3

50
3-

61
35

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

FE
C

61
59

0.
20

24
.0

00
16

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

VNs’ preferences for users/workflows remain some of the

central challenges for VEC resource management [7].

Unlike traditional cloud and edge systems [8], [9], [10],

[11], where resource allocation is typically formulated as an

optimization problem and solved using sub-optimal heuristics,

resources in VEC systems are complicated to manage, due to

their highly decentralized nature and heterogeneity. A VEC

environment, comprising of multitude of VEC clusters, suffer

from: a) diverse resource usage policies that might not be

well laid-out, b) unpredictable usage pattern leading to ever-

fluctuating job queue, and c) untrusted configurations that are

difficult to predict. Thus, in many cases, task schedulers are

unable to ascertain complete information about the capabilities

and status of VNs (e.g., availability, trustworthiness, security

posture, job queue length) belonging to such diverse clusters.

Classical optimization based approaches, thus, are ineffective

in the presence of such imperfect information and system

variability. In recent times, Reinforcement learning (RL) based

approaches are being proposed for decision-making under

uncertain and dynamic environmental conditions [12], while

addressing security concerns [13] amidst extreme environmen-

tal fluctuations. In general, RL can learn from interactions

within the environment, even when faced with incomplete

information about resource availabilities and task require-

ments. Over time, RL can adapt resource allocation policies

based on the feedback received through rewards and penalties,

effectively learning how to allocate resources in a way that

maximizes system efficiency and task performance.

In this paper, we introduce an RL-driven task scheduling

approach for assigning data-intensive workflow tasks to di-

verse VNs within a VEC environment. Our approach takes

into consideration workflow QoS specifications (i.e., QSpecs)

and security specifications (i.e., SSpecs) to satisfy workflow re-

quirements. At the same time, the proposed approach considers

the long-term trustworthiness (i.e., trust), resource specifica-

tions (i.e., RSpecs), and user/workflow preferences of the VNs

belonging to different VEC clusters in order to ensure robust

resource allocation and with the aim to satisfy both workflow-

centric and resource-centric needs. Our approach uses the

above mentioned factors to formulate a long-term average

performance optimization problem. The proposed approach

piggybacks on our earlier research on workflow specification

formalization [14] and trust computation within VEC environ-

ment [6], [5] to formulate the long-term average performance

optimization problem. To find the optimal solution, we reframe

the problem as a Markov Decision Process (MDP), which

is then solved using an event-based Asynchronous Advan-

tage Actor-Critic (A3C) based RL approach. The solution is

implemented as the centralized task scheduling strategy for

assigning an incoming workflow task (considered an event) to

an available and suitable VN within the VEC environment.

We validate the effectiveness of our proposed RL-driven

approach through a comprehensive simulation and a VEC

testbed implementation. For the evaluation, we implement real

bioinformatics data analytic workflows from the SoyKB sci-

ence gateway [15] which are typically executed at community

cloud sites, and thus serve as ideal candidates for VEC adop-

tion. Specifically, we implement two workflows, viz., PGen

and RNA-Seq that have varied QSpecs and SSpecs [16]. The

former is comparatively complicated workflow that performs

extensive next-generation data sequencing analysis, while the

latter is relatively simpler, designed for gene expression quan-

tization using transcriptomics data. In order to add workflow

diversity in terms of requirements, we also incorporate two

synthetic workflows into the simulation, augmenting them with

artificially generated QSpecs and SSpecs that mimic typical

bioinformatics workflows. The simulation results demonstrate

our RL-driven approach’s success in delivering high worklfow

requirement satisfaction and resource preference satisfaction

for varying task arrival rates and number of available VNs

within the environment. As an added benefit, the results also

show that our RL-driven long term optimization strategy can

ensure that more than 50% of VNs’ job queues are at least

50% full at all times, for realistic values of task arrival

rates; thus demonstrating our approach’s efficiency in utilizing

available VNs. Finally, we demonstrate that our RL-driven

approach performs significantly better than other popular base-

line volunteer resource scheduling strategies [2], [6] in terms

of requirement satisfaction, task rejection rate, and available

VN utilization. We additionally implement our RL-driven

scheduling solution on a VEC environment testbed, built on

the Nautilus Kubernetes cloud platform [17] and running real

bioinformatics workflows. The implementation results confirm

the claims from simulation results, thus demonstrating great

benefits of our proposed solution.

The remainder of this paper is organized as follow: Sec-

tion II presents the research background and related work.

Section III describes the system model and formulates the

problem. Section IV describes the proposed RL-based ap-

proach. Section V discusses evaluation. Section VI concludes

the paper.

II. BACKGROUND AND RELATED WORK

In this section, we present an overview of VEC environ-

ments, challenges in VEC resource management, and the

current state-of-the-art and knowledge gaps.

A. VEC computing ecosystem

Figure 1 portrays the foundational framework of a typical

VEC system, comprising of: VEC users submitting workflows

with specific requirements, a centralized scheduler tasked with

assigning the workflow tasks to VNs, and VNs belonging to

VEC clusters with their local job queue and user/workflow

preferences. The users, i.e., scientists and researchers, strive

to efficiently and affordably execute data-intensive workflows

through on-demand computational resources delivered via a

VEC service, often handled by a cloud-native, centralized task

scheduler. The scheduler orchestrates intricate logic to align

submitted workflow requirements with the best-fit resources

from the available VNs. On the other hand, the VNs or the

clusters the VNs belong to, suggest user/workflow preferences

that the scheduler tries to accommodate when assigning work-

flow tasks. The VNs encompass a diverse range of hardware,

spanning from rack servers to desktops, and from laptops to

GPU accelerators with varied computational capabilities. The

specific hardware configuration of VNs is contingent upon the

80

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

contributions made by individual researcher labs/institutions

that act as volunteers, donating their equipment when not in

use. Consequently, the VEC ecosystem embraces a heteroge-

neous collection of resources, accommodating the availability

and capabilities of participating volunteers’ hardware. This

flexible and decentralized nature of VNs enable the ecosystem

to leverage a wide array of computational resources, fostering

a collaborative and distributed environment for data-intensive

scientific workflow execution.

B. Resources management in VEC environments

Various mechanisms are proposed to address the scheduling

challenges of heterogeneous VEC environments. Maheshwari

et al. [18] propose a hybrid edge cloud model that supports

latency-sensitive applications in urban areas, optimizing re-

source provisioning as per requirements. Galletta et al. [19]

introduce the CESIO architecture, enhancing video content

delivery quality within the same edge. Funai et al. [20] suggest

an ad-hoc model where devices with internet access act as

local task distribution points (TDPs), inviting other users to

participate. Mengistu et al. [21], [7] leverage idle home IoT

devices to expand the volunteer resource pool. Inspired by

these concepts, Ali et al. [22] propose a fog-cloud based

task distribution layer, bringing cloud services closer to end

users through fog nodes. Sebastio et al. [23] present a holistic

volunteer cloud model that employs Ant Colony Optimization

(ACO) to optimize task-resource assignments. Pandey et al. [5]

propose a trust-based mechanism for allocating computational

resources. Alarcon et al. [6] and Rodrigues et al. [24] use

Particle Swarm Optimization (PSO) to dynamically assign

users to volunteer resources. Unlike these existing works,
we take a holistic approach that performs long-term joint
optimization of workflow requirements and VN preferences,
while considering VN resource policies and long-term trust,
using a black-box approach which is more practical, yet
challenging to solve.

C. RL for distributed resource management

Reinforcement Learning (RL), particularly the Actor-Critic

method, shows great promise in enhancing resource allocation,

task scheduling, and overall system performance, especially

in dynamic and black-box environments like VEC computing.

Fu et al. [25] propose an innovative Actor-Critic mechanism

to manage offloading decisions and resource allocation in

Mobile Edge Computing (MEC) environments. Similarly, Wei

et al. [26] focus on optimizing user scheduling and resource

allocation in heterogeneous mobile networks using a policy-

gradient-based Actor-Critic approach. Shah et al. [27] address

network utility maximization in massive IoT environments by

proposing a hierarchical deep Actor-Critic model for network

management and resource allocation. Additionally, Chen et

al. [28] introduce an Actor-Critic method-based framework

to optimize resource allocation in cloud data centers, target-

ing improved job execution latency and resource utilization.

Meanwhile, Tathe et al. [29] focus on down-link Transmission

for Long Term Evaluation Advanced (LTE-A) radio resource

allocation, proposing an Actor-Critic based architecture to

maintain QoS and user fairness amidst dynamic scheduling

challenges. These collective results demonstrate the effective-
ness of the Actor-Critic approach in handling the dynamic
and black-box nature of environments. Motivated by these
outcomes, we pursue an Actor-Critic based approach, viz.,
A3C for task scheduling in VEC environments. To the best of
our knowledge, no such approaches exist that seeks to optimize
resource allocation in volunteer computing environment, tak-
ing into consideration the requirements and preferences from
both workflow and resource sides.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and formulate

the optimization problem.

A. System model

The main components of our VEC system are as follows:

Workflows and tasks: We define a set of m workflows

W = {Wa,Wb, . . . ,Wm} that uses the VEC environment.

An instance of a workflow is referred to as a task. Each task
is a sextuple (w, data, time, userID,QSpecs, SSpecs) rep-

resenting the workflow, input data, submission time, user ID

of the task submitter, QoS requirements, and security require-

ments of the specific task within the workflow, respectively.

QSpecs is a formalized and quantifiable way of representing

a workflow task’s desired performance requirements that in-

cludes QoS metrics, such as throughput, latency, and response

time. Whereas, SSpecs specifies a task’s security requirements

across certain (say F) security factors, as recommended by

NIST SP 800E guidelines [30], [14]. The level of each of

these factors is set as High/Moderate/Low based on the NIST

guidelines. Both QSpecs and SSpecs concepts are borrowed

from the seminal work by Dickinson et al. [14], while the

process of generating QSpecs and SSpecs for data-intensive

workflow tasks can be found in [31].

VEC cluster: The VEC environment is composed of a col-

lection of C clusters denoted as C = {V EC1, . . . , V EC|C|},

where each cluster consists of a varying number of VNs.

From the perspective of the scheduler, VNs are considered

as individual entities that operate independently. Thus, in

the formulation and management of tasks, we consider VNs

as distinct entities, each with its own characteristics and

specifications.

VEC nodes (VNs): We define a set of N VNs V =
{V N1, V N2, ..., V NN} in the environment. Each V N ∈ V
is another sextuple (deviceID,RSpecs, P, config, T,Q) rep-

resenting VN’s identification number, resource specification,

preference list, configuration, trust, and local queue, respec-

tively. The resource specifications, denoted as RSpecs, define

a set of factors that describe the security posture and usage

policies of a VN, also adopted from [14]. Additionally, the

preference list P is an ordered list of ρ workflow users. As

described earlier, the preferences can be based on a variety

of factors, such as, workflow data type, reputation of the

workflow users, and history of prior collaborations between

the data and resource sites. The VNs exhibit heterogeneous

81

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

configurations, yet VNs within the same cluster share common

specifications in terms of guaranteed security measures and

policies as well as a preference list. Furthermore, we consider

a local job queue of maximum size Γj for each V Nj .

Trust: The trustworthiness of a V Nj is denoted by a quantifi-

able trust metric Tj and is defined as the level of consistency

the VNs exhibit over time in terms of performance, agility,

cost, and security (PACS) factors, as defined in [5]. Given

the voluntary nature of VEC resources, the VEC clusters may

incidentally modify configurations, such as adjusting capacity

or availability, or change security settings. Consequently, con-

sistent provisioning of resources and configurations becomes

indicative of reliable VNs.

Task assignment: Depending on the the task requirements and

VN availability, a task maybe accepted and assigned to a VN

or rejected. We use the symbol NULL to represent rejection of

a task. Let g denote the assignment function that maps tasks

into the elements of V ∪ {NULL}:

g(t, taski) =

⎧⎨
⎩

VNj , if taski is assigned to VNj

NULL, if taski is rejected

(1)

To quantify the quality of an assignment, we define a satisfac-

tion score denoted by S that evaluates the assignment in terms

of both tasks and VNs.

B. Task satisfaction score

The task satisfaction score measures the alignment of task’s

QSpecs and SSpecs with the resource configuration and

RSpecs of the assigned VN, respectively. It has two parts:

• QoS satisfaction score: The QoS satisfaction score, i.e.,

QSpecsS measures the alignment of task QSpecs with

the estimated performance that V Nj offers. Let WT and

Exe represent the estimated waiting time in the queue and

estimated execution time of V Nj , respectively. Here, WT
in VN’s queue (Q) is sum of the execution times of all the

existing jobs in the queue. Thus,

WT (V Nj) =

|Qj |∑
i=0

Exe(taski, V Nj) (2)

where |Qj | stands for the size of V Nj’s queue. Then, we

define the QoS satisfaction score QSpecsS as:

QSpecsS(taski, V Nj) =

⎧⎨
⎩

1

1+e−Δi,j
, if Δi,j ≥ 0

tanh(Δi,j), if Δi,j < 0
(3)

where Δi,j is the difference between the required latency of

the task QSpecs(taski) and the estimated latency at V Nj :

Δi,j = QSpecs(taski)−WT (V Nj)− Exe(taski, V Nj)
(4)

• Security satisfaction score: We define the security satis-

faction score SSpecsS as the minimum distance between

the required security level of the task taski and the offered

security level by V Nj across F security factors, as described

earlier. We propose to utilize a hard-security enforcement

that does not allow an assignment of a task to a VN with

a lower security level in any of the F security factors. On

the other hand, to manage resources more efficiently and

avoid security over-provisioning, our proposed assignment

strategy gives a lower security satisfaction score SSpecsS
for assigning a task to a VN with strictly higher security

level guarantees. For analysis, we assign the numerical

values 1, 2, and 3 to security categories Low, Moderate,

and High, respectively. Thus,

SSpecsS(taski, V Nj) = min
f ∈ F

δfi,j (5)

where the distance function δfi,j is defined over the f
security factor as follows:

δfi,j =

⎧⎪⎨
⎪⎩

√
3−(RSpecsfj −SSpecsfi)

3 , if RSpecsfj ≥ SSpecsfi

0, o/w
(6)

With QSpecsS and SSpecsS defined, we propose a joint

QoS and security driven task satisfaction score TS, where:

TS(taski, V Nj) =

⎧⎪⎪⎨
⎪⎪⎩

0, if SSpecsS(taski, V Nj) = 0

c1.SSpecsS(taski, V Nj)

+c2.QSpecsS(taski, V Nj),
o/w

(7)

C. VN preference satisfaction score

The VN preference satisfaction score, denoted by V NS, is

described as a function of an assigned users’ rank in the VN’s

preference list. Specifically, we define V NS as a logarithmic

function of taski’s rank in Pj (denoted by rank(taski, Pj)).

V NS =

⎧⎨
⎩
1− 1

6 ln(rank(taski, Pj)), if taski ∈ Pj

0, o/w

(8)

D. Overall satisfaction score

The overall satisfaction score S of a task assignment to a

VN is a function of TS, V NS, and trust T of the VN at the

time of assignment. Thus:

S(taski, g(t, taski)) =

⎧⎪⎪⎨
⎪⎪⎩

−b, if f(t, taski) is NULL

a1.Tj(t).TS(taski, V Nj)

+ a2.V NS(taski, V Nj),
o/w

(9)

Here, constant b incorporates dissatisfaction of rejecting a task.

E. Formulating the optimization problem

We formulate the following optimization problem with the

objective of jointly maximizing the average overall satisfaction

score of the assignment strategy (over long-term), subject

to the capacity of VNs’ local queues and the hard-security

requirement constraints explained earlier:

max lim
T→∞

1

T

T∑
t=1

∑
i∈Tasks

S(taski, g(t, taski)) (10a)

s.t. |Qj(t)|+ 1{g(t,taski)=V Nj} ≤ Γj ∀j ∈ [N] (10b)

SSpecsS(taski, g(t, taski)) > 0 (10c)

where (10b) ensures the assignment does not over-flow the

local queues of the VNs, while (10c) enforces a hard constraint

82

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

on the security requirement of the submitted task which

does not tolerate a lower than required security level of the

assigned VN, and 1{·} denotes an indicator function. The

optimization problem thus formulated is a multivariate NP-

hard problem that demands the evaluation of all possible

allocation permutations to determine the optimal solution. Due

to the dynamic and black-box nature of VEC environment to

the task scheduler, we choose a RL-driven approach to solve

such complex optimization problem.

IV. ASYNCHRONOUS REINFORCEMENT LEARNING

Here, we reframe the optimization problem as a Markov

Decision Process (MDP) as it perfectly captures the dy-

namism of the VEC environment and introduces an event-

based decision-making approach grounded in asynchronous

deep reinforcement learning in order to solve the problem.

More precisely, we utilize Asynchronous Advantage Actor-

Critic (A3C) [32] architecture to implement our scheduler

strategy. This strategy is purposefully crafted to optimize the

long-term average performance, as articulated in Eq. (10). We

deploy parallel agents to learn an environment characterized

by a finite set of states denoted as S and a finite set of actions

denoted as A. Next, we describe our A3C approach.

A. Learning agents for the scheduler

The combination of task information and task load within

VNs’ queues encapsulates a comprehensive representation of

the system’s state, fully discernible by our scheduler agent.

This state encapsulates the specifics of the current task, as

well as the status of local queues.

States: Let S denote the state space of the environment (i.e.,

our scheduler agent). The state of our scheduler agent at time

t, denoted by s(t) ∈ S , captures the particulars of the current

submitted task taski, including the task associated workflow

(wi), data (datai), and userID (userIDi). Additionally, it

consists of information about the VN’s local queue status in

relation to its respective load. For quantization, we consider

four categories for a VN queue load based on the queue

utilization: Low (L), Medium (M), High (H), and Full (F). We

define queue utilization as the ratio of the number of tasks in

the queue (|Qj |) over the queue capacity (Γj) of the V Nj ,

and define the state of the V Nj queue load at time t by:

L(Qj(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L, if
|Qj |
Γj

≤ 0.3

M, if 0.3 <
|Qj |
Γj

≤ 0.6

H, if 0.6 <
|Qj |
Γj

≤ 0.9

F, if
|Qj |
Γj

> 0.9

(11)

Here, the specific values (i.e., 30%, 60%, and 90%) represent

different levels of queue utilization. However, the analysis

holds true all other different quantization levels and values.

Consequently, the observations space S of our scheduler agent

is captured by:

S =
{
s(t) = [

Taski︷ ︸︸ ︷
wi, datai, userIDi,

VNs load︷ ︸︸ ︷
L(Q1(t)), . . . ,L(QN (t))] : ∀j ∈ [N],

L(Qj(t)) ∈ {L,M,H, F},wi ∈ W
}

(12)

Actions: The action space of the scheduler agent, denoted

by A, is a discrete action space. At time t, the action a(t)
performed by the scheduler agent is to either reject the

submitted task or to assign the task to a particular V N ∈ V:

A = {a(t) : a(t) ∈ V ∪ {NULL}} (13)

System reward: The reward function R(t) denotes the instant

reward acquired following the transition from state s(t) to state

s(t + 1) by executing the action a(t). In our proposed A3C

model, this reward function is realized as the satisfaction score

in Eq. (9) of the allocation or the penalty of rejection:

R(t) = S(taski, g(t, taski)) (14)

B. A3C network architecture and algorithm

As shown in Fig. 2, our A3C [32] architecture comprises of

two components: the actor network and the critic network. The

actor network learns a policy π that guides scheduler action

selection, while the critic assesses the value of states, offering

feedback for policy enhancement. A3C employs a parallelized

approach by deploying multiple worker agents simultaneously,

each operating within its own independent environment. This

strategy fosters a diverse training experience and accelerates

the learning process, particularly beneficial when handling

larger observation spaces, such as ours as encountered when

the number of VNs increases.

We design an offline learning algorithm (as shown in

Algo. 1) for A3C driven task scheduling. In the initialization

phase, the agents build actor and critic networks with random

weights. Then the scheduler agent continuously interacts with

the current environment and makes assignment decisions after

each task submission. At the end of each episode, both actor

and critic networks’ weights are updated with a batch of

experienced transitions. Our network is structured with a basic

architecture, consisting of two fully connected layers, each

with a feature size of 512 and 256, respectively. We’ve open-

sourced the study’s source code on GitHub [33].

V. EVALUATION

In this section, we evaluate the performance of our proposed

task scheduling approach through an extensive simulation,

followed by a testbed implementation on Nautilus Kubernetes

cloud platform [17].

A. Simulation environment

We begin by outlining the workflows used, their require-

ments, and the VEC environment.

• Workflows: In this work, we choose two high-throughput and

typically cloud-native bioinformatics data analysis work-

flows in the SoyKB [15] science gateway developed for

soybean and other related organisms. The complex PGen

workflow is used to efficiently facilitate analysis of large-

scale next generation sequencing (NGS) data for genomic

variations. We also use a comparatively simpler RNA-Seq

analysis workflow that is used to perform quantization of

gene expression from transcriptomics data and statistical

analysis to discover differential expressed gen/isoform be-

tween experimental groups/conditions. Given the frequency

83

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The proposed A3C architecture orchestrating multiple worker agents to concurrently interact with and learn from the environment

TABLE I: Workflow SSpecs for simulation

Workflow AC CA IA SC SI
PGen H H H L L

RNASeq H H H L L
Synthetic 1 M M L L L
Synthetic 2 H M L L L

TABLE II: VNs’ RSpecs for simulation

RSpecs Hardware AC CA IA SC SI
RSpecs 1 config1 H H H M L
RSpecs 2 config1 H H H L L
RSpecs 3 config1 H H H M M
RSpecs 4 config1 H M L L L
RSpecs 5 config2 H H H M M
RSpecs 6 config2 H H H L L

at which they are run (typically once or twice a week

per user) and the total cost incurred for cloud adoption,

they are ideal for VEC migration and an event-based task

scheduling approach, such as ours. We also generate two

synthetic workflows in order to add diversity and scale to

our workflow pool. Overall, the combined workflow tasks

arrival rate to the task scheduler follows classic Poisson

distribution.

• SSpecs: The details of the SSpecs of PGen and RNASeq

workflows are explained in [31]. SSpecs for the synthetic

workflows are simulated to add diversity to the SSpecs pool.

For this work, we only use 5 out of 18 security factors (as

recommended by NIST) as they are the most relevant for

VEC environments. These include: Access Control (AC),

Security Assessment and Authorization (CA), Identification

and Authorization (IA), System and Communication Protec-

tion (SC), and System and information Integrity (SI). The

SSpecs details are listed in Table I.

• QSpecs: Due to the scale-down of workflow datasize to fit

the simulation scenario, simulated QSpecs differ from real

QSpecs described in [31]. The determination of QSpec for

a workflow task involves assessing the average execution

time when running that workflow with a specific data size

on one of the standardized configuration. Additionally, we

estimate the projected execution time of a task on a VN by

analyzing data acquired from executing the same workflow

with different data sizes within that specific configuration.

• VNs: With the objective of creating a diverse pool of VNs in

terms of hardware and policy configurations, i.e., RSpecs,

we simulate 6 RSpecs configurations that are typical for

a VEC environment comprising of lab based hardware as

shown in Table II. Generating the configurations follows

the security posture formalization and alignment technique

described in [14]. For the hardware, we use two distinct

configurations that are typical for lab edge servers, they

are: 1) PC with 32GB of RAM, Core i7 CPU with 2.8

GHz speed, and 2TB of disk space and 2) PC with 64GB

of RAM, Core i9 CPU with 3 GHZ speed, and 4TB

of disk space. The variations in RSpecs and hardware

configuration help us create a heterogeneous pool of 12 VNs

(unless mentioned otherwise); 2 each for each combination

described in Table II. The workflow preference list of each

VN is kept at ρ = 5 and is generated uniformly randomly.

84

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 3: Requirement satisfaction for different task arrival rates

(a) (b) (c)

Fig. 4: Requirement satisfaction for different numbers of VNs

The maximum job queue capacity of each VN (i.e., Γ) is

also kept at 5, i.e., a new task assigned to a VN with 5 jobs

already in its queue is rejected. Furthermore, for generating

trust values of VNs, we use the principle of performance

mismatch for trust estimation as described in VECTrust [5].

• Baseline approaches: As baseline strategies for compar-

isons, we first simulate Particle Swarm Optimization (PSO)

based scheduling as deployed in ‘VECFlex’ [6]. Next, we

use a completely ‘Random’ scheme that assigns tasks to

VNs in a randomized fashion without consideration on

requirement satisfaction, with the goal of long term fairness.

The next scheme is a Greedy-Random approach (‘GR’) that

evaluates which VNs can satisfy the task QoS and security

requirements and then randomly chooses one out of them.

Finally, the Greedy-Best approach (‘GB’) always chooses

the best VN in terms of requirement satisfaction. The

greedy schemes are variations to state-of-the-art volunteer

computing strategies such as [2].

B. Simulation results

Below, we discuss different aspects of the simulation results.

Requirement satisfaction: In Fig. 3, we first show how our

A3C based RL approach performs in terms of satisfying task

QoS and security requirements, and VN preference require-

ments, for different task arrival rates (λ). We observe that

both QSpecs and SSpecs satisfaction performance is close

to 100% for lower job arrival rates. However, at very high

λ, workflow satisfaction goes down due to high competition

among workflows for limited VNs. Overall, we can observe

that our proposed RL-driven task scheduling ensures require-

ment satisfaction, for more than 50% of the workflows. Fig. 4

shows requirement satisfaction performance against varying

number of available VNs. We observe that both QSpecs and

SSpecs satisfaction improve with more VNs in the environ-

ment as with more VNs, the probability of finding VNs with

the right RSpecs to match workflow requirements increases.

It is interesting to observe that the synthetic workflows have

higher probabilities of requirement satisfaction than PGen and

RNASeq as the latter ones have stricter SSpecs to satisfy.

Average utilization: In Fig. 5, we seek to ascertain the

performance of our proposed approach in terms of average

utilization of available VNs across the VEC environment.

Figs. 5(a) and (b) show the percentage of different levels

of utilization of two specific VNs (characterized by their

RSpecs) for the entire duration of the simulation. Fig. 5(a)

shows a VN with RSpecs1 which has the lowest average

utilization over the simulation period. The figure shows that

even for the most under-utilized VN, the job queue is more

than 50% full (i.e., with at least 2 jobs) for more than half the

time. The utilization performance is even more impressive for

the VN which is most utilized (i.e., VN with with RSpecs6),

as shown in Fig. 5(b). The average performance of all VNs

(with all Rspecs) for different job arrival rates (i.e., λ) is

shown in Fig. 5(c) which shows that even with lower λ, many

VNs are more than 50% full for more than 50% of the time.

Satisfaction comparison: Next in Fig. 6, we compare our

proposed approach (i.e., ‘RL’) against two of the baseline

approaches (i.e., ‘Random’ and ‘VECFlex’) in terms of task

requirement satisfaction. Overall, the comparisons are carried

out by running the simulation over 50 times, each with

different sets of workflow demands. In Fig. 6(a), we show

the percentage of PGen and Synthetic1 workflows whose

QSpecs are satisfied by our RL-driven scheme versus Random

and VECFlex. We observe that our our RL scheme follows

85

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

(a) VN with RSpecs1 (b) VN with RSpecs6 (c) All VNs

Fig. 5: Average utilization of VNs

Algorithm 1 A3C-based task scheduler training

Assume global shared parameter vectors θ and θv for

Actor and Critic networks, respectively
Initialize thread-specific parameter vectors θ′ and θ′v ran-

domly
Output: Global shared parameters θ and θv

1: for episode=1 to Z (Total number of Episodes) do
2: Synchronize thread-specific parameters θ′ ← θ and

θ′v ← θv
3: Reset gradients: dθ ← 0 and dθv ← 0.

4: Reset agent’s state s
5: Initialize empty episode buffer s1, a1, r1, . . . , st, at, rt
6: t ← 0
7: for t=1 to T do
8: // Assume task is submitted at time t
9: Update state st based on the submitted task

and the status of VNs using Eq. (12): s(t) =
[w, data, userID,L(Q1(t)), . . . ,L(QN (t))]

10: Input state st to the Actor with weights θ′ and

generate action at ∈ V ∪ {NULL} (Eq. (13))

according to policy π(at|st; θ′)
11: Receive reward rt = S(task, g(t, task)) (Eq. (14))

and the next state st+1
12: Update the status of task (allocated, rejected)

13: if action at not NULL then
14: Add task to the corresponding VN queue Qat

15: Append (st, at, rt) to the episode buffer β

16: Compute discounted rewards R̂t for each time step t
and update θ′ and θ′v

17: Perform asynchronous update of θ using dθ and of θv
using dθv .

VECFlex’s greedy approach closely for smaller λ values.

Further, for all values of λ and irrespective of the workflow,

RL performs significantly better than Random assignment,

even though the latter is designed for resource fairness. We

see that QSpecs satisfaction performance for Synthetic1 is

better than PGen as the latter has stricter QSpecs requirement.

Fig. 6(b) also demonstrates our RL scheme’s superiority over

Random with RL delivering more than 0.5 SSpecs satisfac-

tion score for almost 100% of the workflows, especially for

lower λ. Although the percentage of workflows with SSpecs

(a) (b)

Fig. 6: Workflow requirement satisfaction comparison

(a) (b)

Fig. 7: Rejection rate comparison

satisfaction score of at least 0.5 decreases with larger λ, RL

continues to perform better than Random. Comparing RL and

VECFlex, it is evident that RL performs on par for smaller λ,

but outperforms VECFlex as λ approaches larger values.

Job rejection rate comparison: In Fig. 7, we compare the

task rejection rates for our proposed RL-driven approach

against other baseline strategies. Fig. 7(a) demonstrates that

for different λ, VECFlex and RL perform considerably better

than GB and GR strategies for Synthetic2 workflow. However,

for RNASeq, VECFlex and GB performs better than RL,

while all perform better than GR. RL’s better performance for

Synthetic2 workflow can be explained by the computational

complexity of this workflow; as RL model penalizes resource

over-provisioning, it reserves resources for computationally

intensive workflows, such as Synthetic2. The same reasoning

justifies RL outperforming VECFlex for larger λ. However, for

less intensive workflows such as RNASeq, GR and VECFlex

perform better. In Fig. 7(b), we compare the rejection rates

of PGen and Synthetic1 workflows. As the PGen is computa-

tionally more demanding and has larger input data compared

to Synthetic1, it results in higher rejection rates. On the other

86

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Mean VN utilization comparison

hand, Synthetic1 can be processed by almost all the VNs since

its SSpecs are less stringent. However, for both workflows, we

can observe that RL performs comparable to VECFlex while

significantly better than Random for most λ.

Utilization comparison: Finally, in Fig. 8, we compare mean

VN utilization of our RL-driven approach against GB and

VECFlex. Here, we only consider those VNs whose queues

are at least 50% full (i.e., having more than 2 jobs in their

queues) for the entire duration of the simulation. Here the lines

represent the mean values with the shaded region representing

the standard deviation for each data point of λ. We observe

that for different values of λ, on average, RL performs better

than GB and VECFlex, with RL performing significantly better

than both for lower λ values. This demonstrates our RL-driven

approach’s benefits in judiciously assigning workflows to VNs

that best match workflow requirements with the VN policies.

C. Testbed implementation and results

We implement our RL-driven scheduling solution on a VEC

environment testbed, built on the Nautilus Kubernetes cloud

platform [17], a specialized platform optimized for cloud-

native applications and orchestrated containerized processes.

The core components of the system consist of the proposed

scheduler and the VEC environment. The scheduler, featuring

a robust backend, integrates a database system and a dedicated

service for efficient task scheduling. It is hosted on containers

created from the golang:1.20 Docker image [34]. Commu-

nication occurs over ports 8080 and 3306 for backend and

database services, respectively. The VNs, are constructed using

the latest Go Docker image and are equipped with a suite of

bioinformatics tools and software, capable of running RNASeq

workflow. Each VN allocates specific resources, ranging from

4 CPUs and 8 GB of RAM to more powerful configurations,

ensuring optimal performance for bioinformatics tasks. The

entire networking infrastructure of the system is managed

through Kubernetes services and ingress, guaranteeing secure

and encrypted communication channels.

For evaluation, we deploy RNASeq workflow with SSpecs
outlined in Table I, on 6 VNs with RSpecs outlined on

Table II. Due to the high cost of cloud services, we scaled

down the size of workflows to maximum 1 GB, and evalu-

ated the performance of the proposed RL-driven scheduling

strategy over 1 hour for different task arrival rates (i.e., λ). It

worth mentioning that the arrival rates are scaled in propor-

tion to the new data sizes for the implementation. Table III

summarizes the results for key performance metrics, such as

‘Satisfied QSpecs’, ‘SSpecs > 0.5’, ‘Satisfied preference

(%)’, ‘Rejected Tasks (%)’, and ‘Mean Utilization ≥ 0.5’. We

observe that workflow and VN satisfactions values are close

to 100% with lower values of λ and stays above 60% even

for larger arrival rates. The testbed results thus corroborate

the simulation findings demonstrating high effectiveness and

efficiency of our proposed scheduling solution.

TABLE III: Scheduling performance for different λ

λ
Satisfied

QSpecs(%)
SSpecs
> 0.5(%)

Satisfied
Preference(%)

Rejected
Tasks(%)

Mean Utilization
≥0.5(%)

0.02 94.82 98.27 98.27 1.72 2.58
0.03 96.55 98.27 98.27 1.72 1.34
0.04 86.20 86.20 89.65 10.34 2.90
0.05 87.93 89.65 89.65 10.34 1.86
0.06 64.01 66.56 64.01 33.43 5.70
0.07 62.06 62.06 62.06 37.93 5.55

VI. CONCLUSIONS

In this paper, we introduced an A3C based RL-driven

approach to data-intensive workflow task scheduling for VEC

environments. We showed how our solution not only con-

sidered workflow QoS and security requirements, but also

took into account diverse VEC resource policies dictated by

various clusters (i.e., universities/labs/institutions) and their

user/workflow preferences. Using extensive simulations and

testbed implementation, we demonstrated how our proposed

solution performed significantly better than other baseline

strategies in terms of requirement satisfaction, task rejection

rate, and available VN utilization.

REFERENCES

[1] P. Mell, T. Grance, et al., “The nist definition of cloud computing,”
2011.

[2] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“Seti@home-massively distributed computing for seti,” Computing in
Science Engineering, vol. 3, no. 1, pp. 78–83, 2001.

[3] “BOINC.” https://boinc.berkeley.edu/. Accessed: August, 2023.
[4] André Pires et al., “Distributed and decentralized orchestration of

containers on edge clouds,” Journal of Grid Computing, vol. 19, pp. 1–
20, 2021.

[5] A. Pandey, P. Calyam, S. Debroy, S. Wang, and M. L. Alarcon, “Vectrust:
Trusted resource allocation in volunteer edge-cloud computing work-
flows,” 2021.

[6] M. L. Alarcon, M. Nguyen, A. Pandey, S. Debroy, and P. Calyam,
“Vecflex: Reconfigurability and scalability for trustworthy volunteer
edge-cloud supporting data-intensive scientific computing,” in 2022
IEEE/ACM 15th International Conference on Utility and Cloud Com-
puting (UCC), pp. 151–156, IEEE, 2022.

[7] T. M. Mengistu, A. Albuali, A. Alahmadi, and D. Che, “Volunteer cloud
as an edge computing enabler,” pp. 76–84, 2019.

[8] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-
Pastor, and A. Monje, “On the optimal allocation of virtual resources in
cloud computing networks,” IEEE Transactions on Computers, vol. 62,
no. 6, pp. 1060–1071, 2013.

[9] B. Shrimali and H. Patel, “Multi-objective optimization oriented policy
for performance and energy efficient resource allocation in cloud envi-
ronment,” Journal of King Saud University-Computer and Information
Sciences, vol. 32, no. 7, pp. 860–869, 2020.

[10] H. Tang, C. Li, J. Bai, J. Tang, and Y. Luo, “Dynamic resource allocation
strategy for latency-critical and computation-intensive applications in
cloud–edge environment,” Computer Communications, vol. 134, pp. 70–
82, 2019.

87

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

[11] X. Zhang, M. Mounesan, and S. Debroy, “Effect-dnn: Energy-efficient
edge framework for real-time dnn inference,” in 2023 IEEE 24th
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pp. 10–20, 2023.

[12] Chathurangi Shyalika et al., “Reinforcement learning in dynamic task
scheduling: A review,” SN Computer Science, vol. 1, pp. 1–17, 2020.

[13] Y. He, G. Han, J. Jiang, H. Wang, and M. Martı́nez-Garcı́a, “A
trust update mechanism based on reinforcement learning in underwater
acoustic sensor networks,” IEEE Transactions on Mobile Computing,
vol. 21, no. 3, pp. 811–821, 2022.

[14] M. Dickinson, S. Debroy, P. Calyam, S. Valluripally, Y. Zhang, R. B.
Antequera, T. Joshi, T. White, and D. Xu, “Multi-cloud performance and
security driven federated workflow management,” IEEE Transactions on
Cloud Computing, 2021.

[15] Trupti Joshi et al., “Soybean knowledge base (soykb): A web resource
for soybean translational genomics,” BMC Genomics, 2012.

[16] Yang Liu et al., “PGen: large-scale genomic variations analysis workflow
and browser in SoyKB,” 13th Annual MCBIOS conference, 2016.

[17] “National Research Platform - Nautilus Kubernetes.”
https://docs.national researchplatform.org/. Accessed: October,
2023.

[18] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, “Scal-
ability and performance evaluation of edge cloud systems for latency
constrained applications,” pp. 286–299, oct 2018.

[19] A. Galletta, A. Cuzzocrea, A. Celesti, M. Fazio, and M. Villari,
“A scalable cloud-edge computing framework for supporting device-
adaptive big media provisioning,” pp. 669–674, 2018.

[20] C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman,
“Extending volunteer computing through mobile ad hoc networking,”
pp. 32–38, 2014.

[21] T. M. Mengistu, A. M. Alahmadi, Y. Alsenani, A. Albuali, and D. Che,
“cucloud: Volunteer computing as a service (vcaas) system,” pp. 251–
264, 2018.

[22] B. Ali, M. Adeel Pasha, S. u. Islam, H. Song, and R. Buyya, “A
volunteer-supported fog computing environment for delay-sensitive iot
applications,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3822–
3830, 2021.

[23] S. Sebastio, M. Amoretti, A. L. Lafuente, and A. Scala, “A holistic
approach for collaborative workload execution in volunteer clouds,”
ACM Trans. Model. Comput. Simul., vol. 28, mar 2018.

[24] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
“Cloudlets activation scheme for scalable mobile edge computing with
transmission power control and virtual machine migration,” IEEE Trans-
actions on Computers, vol. 67, no. 9, pp. 1287–1300, 2018.

[25] F. Fu, Z. Zhang, F. R. Yu, and Q. Yan, “An actor-critic reinforce-
ment learning-based resource management in mobile edge computing
systems,” International Journal of Machine Learning and Cybernetics,
vol. 11, pp. 1875–1889, 2020.

[26] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and
resource allocation in hetnets with hybrid energy supply: An actor-
critic reinforcement learning approach,” IEEE Transactions on Wireless
Communications, vol. 17, no. 1, pp. 680–692, 2017.

[27] Hurmat Ali Shah et al., “Joint network control and resource allocation
for space-terrestrial integrated network through hierarchal deep actor-
critic reinforcement learning,” IEEE Transactions on Vehicular Technol-
ogy, vol. 70, no. 5, pp. 4943–4954, 2021.

[28] Zheyi Chen et al., “Learning-based resource allocation in cloud data cen-
ter using advantage actor-critic,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pp. 1–6, 2019.

[29] P. K. Tathe and M. Sharma, “Dynamic actor-critic: Reinforcement
learning based radio resource scheduling for lte-advanced,” in 2018
Fourth International Conference on Computing Communication Control
and Automation (ICCUBEA), pp. 1–4, IEEE, 2018.

[30] J. T. Force and T. Initiative, “Security and privacy controls for fed-
eral information systems and organizations,” NIST Special Publication,
vol. 800, no. 53, pp. 8–13, 2013.

[31] M. Nguyen, S. Debroy, P. Calyam, Z. Lyu, and T. Joshi, “Security-
aware resource brokering for bioinformatics workflows across federated
multi-cloud infrastructures,” 2020.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
pp. 1928–1937, PMLR, 2016.

[33] “VEC-RL Github Repo.” https://github.com/Motahareee/VEC-RL. Ac-
cessed: March, 2024.

[34] “Go (Goland) Docker Image.” https://hub.docker.com/ /golang. Ac-
cessed: October, 2023.

88

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on December 16,2024 at 17:53:15 UTC from IEEE Xplore. Restrictions apply.

