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Abstract—Collaborative IoT-edge environments, although effec-
tive in hosting latency-sensitive applications, are fundamentally
vulnerable to data falsification attacks that can potentially impact
key system performance objectives. In this paper, we explore and
propose an intent-driven energy data falsification attack model for
collaborative IoT-edge environments and shed light on the attack’s
impact on system performance. Our primary contribution lies in
developing key intuitions and systemization of threat landscape
for attacks with selfish and malicious intents that target one
or many key system performance objectives, viz., overall system
energy-efficiency and end-to-end latency of hosted applications.
The proposed attack model is evaluated, optimized, and validated
through ‘testbed-in-the-loop’ simulations. The results demonstrate
that depending on selfish and malicious intents, the proposed
attack model can achieve upto 50% increase in energy savings for
the compromised IoT devices, accelerate battery drainage of non-
compromised devices, and ensure upto 61% success in violating
application latency requirements.

Index Terms—Edge computing, data falsification, energy effi-
ciency, IoT, task offloading, collaborative computing.

I. INTRODUCTION

With the widespread adoption of compute-intensive machine
learning and artificial intelligence (ML/AI) applications for
mission-critical use cases, collaborative IoT-edge environments
involving IoT devices (e.g., drones, UAVs, robots) and edge
servers that share the burden of the computation workload, are
becoming popular [1]. Given the energy and compute resource
constraints of IoT devices, fully or partially offloading compute-
intensive tasks from the IoT devices to edge servers becomes
imperative to enhance the IoT devices’ energy efficiency and
minimize the strict end-to-end latency requirements of the
involved ML/AI workloads.

In most cases, such energy and latency optimization neces-
sitates key system parameters, such as, energy consumption, to
be periodically measured and shared with a remote controller
that is responsible for overall system resource management.
However, sharing such key information over unsecured wireless
channels and/or relay nodes to the edge server hosted controller,
may leave the overall system vulnerable to data falsification
attacks that can potentially impact the system performance
objectives.

Falsification of energy consumption information, in collab-
orative IoT-edge environment poses a significant challenge
mission-critical applications [2], [3]. Due to the often multi-
objective nature of the system performance optimization, inter-
conflict among such optimization objectives (e.g., energy effi-
ciency and latency), and interdependence among system com-
ponents (e.g., IoT devices and edge servers), data falsification in
energy consumption information may lead to degradation in all
such system performance objectives, depending on the attack
intent. Hence, understanding the attacker’s intent and conflict-
ing system performance objectives are critical. This necessitates
a comprehensive analysis of the attacker’s motives, system
vulnerabilities, and the potential impact of such attacks on
system performance. Although the existing literature contains

extensive studies on data falsification attacks on areas, such as
healthcare, power system and Smart Grids , autonomous vehi-
cles, and wireless networks, there exists little to no exploration
of intent-driven data falsification attacks on collaborative IoT-
edge environments.

In this paper, we explore data falsification attacks, in par-
ticular of energy consumption information, within the context
of collaborative IoT-edge environments, and shed light on their
potential impact on system performance. To this end, we first
present a comprehensive system model of a collaborative IoT-
edge environment hosting a drone driven video processing
application that incorporates three key elements: 1) ML/AI
application model (for visual computing) that involves the task
and data to be offloaded, 2) widely used IoT device energy
consumption model involving sensory, transmission, kinetic,
and computational activities [4], and 3) a state-of-the-art task
offloading strategy from IoT devices (e.g., drones) to edge
servers [5], [6]. Our primary contribution lies in developing
a novel data falsification attack model, which is driven by the
intentions of the attacker in terms of targeting one or many
system performance objectives, while maintaining stealth and
remaining undetected. In particular, we explore four specific
types of attack intents that are either selfish and malicious,
viz., selfishly saving the energy of the compromised devices,
maliciously draining the non-compromised devices of battery,
maliciously jeopardizing the timely execution of ML/AI tasks
associated with non-compromised devices, and inflicting oper-
ation impairment or disruption to non-compromised devices.

The effectiveness of the proposed attack model is evaluated,
optimized, and validated through ‘testbed-in-the-loop’ simu-
lations, that encompass a wide range of attack and system
scenarios. We show that for different attack scales and inten-
sities, attack that are selfish in their intent can result in upto
50% increase in energy savings for the compromised devices.
Furthermore, the results demonstrate that for attacks with mali-
cious intent and under diverse attack scenarios, data falsification
can lead to: i) complete battery drainage of non-compromised
devices, ii) violation of non-compromised devices’ computing
task deadlines, and iii) operational harm to non-compromised
devices, for upto 61% success rate, , depending on system
settings. Overall, the results provide key insights on developing
energy data falsification attacks, with diverse intents, that can
be effective in achieving their goals, yet difficult to detect.

The rest of the paper is organized as follows. Section II
introduces the collaborative IoT-edge system model. Section
III proposes the attack model Section IV discusses the experi-
mental evaluation and results. Section V concludes the paper.

II. SYSTEM MODEL

This work considers a typical collaborative IoT-edge envi-
ronment where the IoT devices are predominantly performing
kinetic and sensory activities on top of sharing the computation
workload with the edge servers. This is achieved by integrating
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Fig. 1: Collaborative IoT-edge system model and data falsification attack

CPU/GPU computational units, such as NVIDIA Jetson Nano
or TX2 units with the devices.

A. Application model
Our exemplary collaborative IoT-edge environment com-

prises of a swarm of camera enabled drones/UAVs that per-
forms video surveillance of a site of interest in collaboration
with a remote edge server which also acts as the overall system
controller, as shown in Fig. 1. In particular, the exemplary
system performs a set of object detection tasks {γ1 . . . γN}
where each γi = {§i1, §i2, ..., §iM} ∀ i ∈ N consists of a
sequence of M stages. We assume that each task has a distinct
and strict latency deadline defined by tid executing in drone Di

where {D1,D2, ...,DN} ∀ i ∈ N is the set of drones. Given the
compute resource constraints of the drones, it is imperative to
offload a set of task stages to the edge server to ensure timely
execution.

B. Computation model and task offloading
1) Fair-allocation heuristic: Here, initially, the controller

leverages the deadlines tid’s to determine the maximum number
of stages that a given drone can complete within the dead-
line. This calculation of the maximum stages is derived as
Max§i =

tid−Apps×Qi

AppU−Apps
, where Qi is total number of stages,

Apps is computation time required for one stage in the server,
and AppU is computation time for one stage in the drone. The
server allocates part of its computational resources to handle
offloaded drone tasks and meet their deadlines. Such relation
also provides the minimum server resource requirement to meet
such task deadline: Min§i = Qi −Max§i

Once the controller collects sufficient data from drones, it
employs a fair allocation of the server capacity to the competing
drones. Further, as a drone’s battery approaches complete de-
pletion, the server redirects the computational capacity initially
designated for that drone to support the remaining drones, guar-
anteeing the continuity of operations with resource efficiency
at its core. Thus, for typical fair allocations, the number of
computational stages of a ML/AI model assigned to a drone
R§i can be expressed as R§i = R× Ci(t)∑N

i=1 Ci(t)
, where R denotes

the remaining number of stages that the server can run and is
calculated as R = Ct −

∑N
i=1 Min§i with Ct being the server

capacity. Here, Ci(t) is the task allocation coefficient calculated
as Ci(t) =

Bi
c(t)
B0

n
with Bi

c(t) being consumed battery at time t

and B0
n being the initial drone battery capacity.

C. IoT device/drone energy consumption model
1) Kinetic and data collection activity: Depending on the

mission, drones can have different kinetic modes. For sim-
plicity, in this model, we only consider flying and hovering.

For each mode, the energy consumption is modeled based on
many factors, such as, drone mass, payload, and number of
rotor to name a few. Based on such factors, we model the
rate of energy, i.e., power consumption for hovering Phov =
f(w, q, g, ρ,∆, n) based on [4], where w represents the total
mass of the drone, q signifies the payload weight, g denotes
the gravitational force, ρ is the density of air, ∆ refers to the
area of the spinning blade, and n is the number of rotors.

Similarly, for flying, the power consumption is modeled as
P fly = f(T, Va, α, Vi, η), where T is total thrust, V a denoted
as air speed, α is the pitch angle for steady flight, V i represents
induced speed, and η is power efficiency. The drones are also
involved in data collection, specifically video streaming that
the ML/AI applications process. Power consumption during
such data collection P data is simply modeled according to well
accepted model in [7].

2) Data transmission activity: Our system model shown in
Fig. 1, assumes direct wireless connection between the drones
and the edge server/controller, however, such connectivity can
also involve intermediate hops of access points/base stations/re-
lay nodes. The power consumption for transmission P trans for
such scenario can be modeled by [5].

III. ATTACK MODEL

A. Exploits for Energy Falsification

IoT devices are generally susceptible to cyberattacks due
to their limited power, connectivity, processing, data storage
capacities, and inherent heterogeneity [8]. Data leakage and
falsification are some of the most critical vulnerabilities and
potential attacks that exist in different layers of a collabora-
tive IoT-edge environment, viz., application, middleware, and
edge layers [9]. For instance, in application layer, IoT device
software is often written in unsafe programming languages
and poorly maintained due to their limited computational and
power resources. Additionally, the hardware used in these
devices is not always robust enough to withstand manipulation
attacks. This lack of robustness makes it easier for attackers to
compromise a device within a network and utilize it as a base to
launch attacks against other devices in the network [10], such
as exfiltration [11]. The primary type of data falsification that
can manifest through IoT middleware layer is the Man-In-The-
Middle (MITM) attack. This attack targets the data exchanged
between endpoints, maybe remotely or often at intermediate
hops/relay nodes through proxy devices compromising both
data integrity and confidentiality by falsifying power data
associated with the compromised drone[12]. Finally, attacks
can also occur through edge layer. However, for this paper,
we explore data falsification before the data reaches the edge
servers.

B. Categories of Attacker Intents

In this work, we conceptualize four possible intents for data
falsification in a collaborative IoT-edge environment, while
remaining undetected for each scenario:
Save energy - Here, a compromised IoT device, i.e., a drone
in our use case, tries to get an unfairly more allocation of
the server’s resources. The controller is fooled into allocating
additional capacity to the selfish drone, believing it to be on
the brink of depletion. This intent is selfish in nature.
Drain non-compromised drones - It is a malicious intent where
the compromised drone seeks to increase the workload of
the non-compromised drones by misleading the controller to
increase tasks assigned to latter.
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Jeopardize task deadlines - This is another malicious intent
where compromised drones seek to violate the task deadlines
running on other non-compromised drones.
Operational impairment/disruption - Under this malicious in-
tent, the adversary seeks to compromise drones by causing
operational impairment to them by misleading them believe
that they can handle more tasks than what they actually can.

C. Taxonomy of Data Falsification
As part of the system model it is assumed that each of

the N drones monitor and record its actual energy consump-
tion for a pre-defined period/time slot/iteration of length t,
denoted as Et

i (actual), consistently and independently. In the
event of data falsification attack, the periodic reported energy
consumption, denoted as Et

i (report) is intentionally modified
from the Et

i (actual) for the compromised drones, based on the
previously mentioned attack intents. The collected data is sent
to the controller which the latter uses for making task offloading
decisions. This iteration t is of constant length and independent
of δt which dictates drone activity. In this work, we specifically
explore two types data falsifications.
Additive: for additive falsification, Et

i (report) = Et
i (actual)+

∆avg , where the ∆avg represents the false energy value injected
to Et

i (actual) by the attacker.
Deductive: In deductive attack, Et

i (report) = Et
i (actual) −

∆avg . Determining the optimal value for ∆avg necessitates
a strategic approach to both achieve the intended goal and
maintain stealthiness.

For both types, the attacker selects the injected value using
a uniformly random distribution within the intervals ∆min <
∆avg < ∆max. The uniform random nature results less spikes
in Et

i (report), and thus is less likely to be detected. If ∆avg
falls outside the range of ∆min to ∆max, we assume that the
system can detect the attack. This assumption leads to further
considerations regarding the attacker’s intent, which we will
discuss later in more detail.

D. Attacker Budget and Objective
We assume that the attacker can compromise Mmax out of

N drones, based on its budget. The scale of the attack, ζ, is
calculated as ζ = Mmax

N .
The impact of the attack can vary depending on the attacker’s

objectives. The attacker may have long term or short term dam-
age objective. Long-term attacks are characterized by their slow
and steady approach, aiming to avoid detection while building
towards a significant strategic objective. On the other hand,
short-term attacks are designed for maximum quick impact
often at the risk of being detected almost immediately[13].

E. Threat Landscape Overview
Next, we explain how the attacker can achieve the intended

goals by misreporting energy values additive through additive
and deductive attacks. Note that the scale (ζ) and degree of
attack (∆avg) affect the potential attack impact and detection
probability. The overall attack intensity, thus can be define as:

I(ζ,∆avg) = f(ζ)× g(∆avg) (1)
and the corresponding reported energy for additive:

Et
i (report) = Et

i (actual) + I(ζ,∆avg) (2)
and for deductive:

Et
i (report) = Et

i (actual)− I(ζ,∆avg) (3)
Save Energy - For this intent, the compromised drone reports
higher energy consumption than the actual Et

i (actual) (i.e.
Et

i (report) > Et
i (actual)), i.e., an additive attack type in

order to selfishly gain energy/battery advantage. This way, the

selfish drone executes fewer tasks, conserves more battery, and
has more residual battery level left, by successfully offloading
more than its fair share of computation tasks to the edge
server. The impact is measured in terms of ‘Break-even time’
BET (ζ,∆avg) (in number of iterations) that measures the
difference in iterations between when the attack starts and when
the attack effects become noticeable, i.e., the iteration where the
residual drone battery level under attack starts to diverge from
normal scenario. Thus, it can be measured as (from Fig. 2):

BETattacked = min{t | Bt
attacked < Bmin} (4)

Drain non-compromised drones - When additive falsification
attacks are orchestrated from multiple drones, i.e., with
Et

i (report) >> Et
i (actual) and/or from many drones (i.e.,

high ζ), the controller, due to the fair task assignment, as-
signs fewer tasks to the compromised drones, while non-
compromised ones get more than their fair share. This acceler-
ates the battery depletion. The BET can be measured as:

BETdrained = min
t
{t | Bri(t) < τ} (5)

where Bri(t) is resual battery and τ is a certain threshold of the
initial battery level below which a drone is considered drained.
Jeopardize task deadlines - Here, the adversary compro-
mises even greater number of drones (higher ζ) reporting
Et

i (report) > Et
i (actual), which results in the server pulling

more workload than it can sustain. This cascading effect can
lead to the server being unable to perform the minimum
required tasks necessary (Min§i ) for deadline satisfaction of
the non-compromised drones, eventually causing the server to
violate their task deadline requirements (tid). This limitation
arises because of the server’s finite capacity. The impact is
measured as the number of iterations the attacks takes till the
deadline is compromised and can be measured as:

Iterationsdeadline = min{t | Ct

N
< Min§i} (6)

Operational Impairment - Under this intent, the adver-
sary launches a deductive attack from compromised drones
by under-reporting energy expenditure, i.e., Et

i (report) <
Et

i (actual), which misleads the server into assigning com-
promised drones more tasks than they can handle. This leads
overloading the drones, eventually leading to drone operation
impairment and disruptions, e.g., sudden crash due to rapid
energy depletion. The impact of this attack is also measured
in BET (in terms of iterations) till the drone is completely
drained of energy (and not below the threshold τ ). This signifies
operational damage or disruption to the drone.

In this paper, in order to develop intuitions about ∆avg which
predominantly dictates the aforementioned attacks’ impacts
and attack detection probability, we choose an experimental
approach, rather than analytical as the latter can become in-
tractable due to too many system variables and their unknown
characteristics.

IV. PERFORMANCE EVALUATION

A. Experimental environment

The proposed intent-driven attack model is evaluated, opti-
mized, and validated using extensive ‘testbed-in-the-loop’ sim-
ulations. Our lab based hardware testbed mimics a collaborative
IoT-edge environment where NVIDIA Jetson TX2 mimics IoT
computational units and a Dell PowerEdge Tower PC mimics
the edge server. In the testbed, using the simulated drone
models, we create a class of heterogeneous collaborative IoT-
edge environments for data falsification experiments. Details of
such heterogeneous simulation provided in Table I.
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Fig. 2: Drone energy expenditure behavior under selfish intent attack: (a) real
vs. reported for the compromised, (b) when not under attack vs. under attack
for the compromised, (c) when not under attack vs. under attack for the non-
compromised, (d) point of deadline jeopardizing for the compromised

B. Quantifying Attack impact
Fig. 2 illustrates additive attacks’ impact (for all intents)

on compromised and non-compromised drones, for ζ = 50%
scenario. In this scenario, the compromised drones, viz., D1 and
D2, misreport their energy consumption by adding ∆avg during
each iteration (i.e., reporting period), as depicted in Fig. 2a.

As shown in Fig. 2b, under no attack conditions, i.e.,
no misreporting by the compromised drones, the controller
identifies D1 to be in critically low-battery condition around
iteration 26. However, when the attack is launched, such diag-
nosis occurs significantly earlier, specifically around iteration
18. In Fig. 2c, we compare the battery drainage effects of
such attacks on drones that are not compromised (i.e., on D3
and D4),signifying drain non-compromised drones intent. We
observe that although effects of such drain non-compromised
drones intent are not as pronounced as save energy intent, the
effects are felt nonetheless. Finally, Fig. 2d illustrates the attack
impact of jeopardize task deadlines intent on compromising the
task completion deadlines. Due to the limited computational
capacity of the server, it can only handle a limited number of
drones that are on the verge of running out of power. If the
scale of the attack increases, for example, ζ equal to 50%, the
server will have to prioritize its resources. This may result in
sacrificing deadlines satisfaction due to limited capacity to even
support the basic needs of all drones. The iteration in question
is shown with a ‘red’ box in Fig. 2d.

C. Trade-offs for save energy intent
Fig. 3 displays the impact of falsification attacks with

save energy intent with different ∆avg values to investigate
optimum ∆avg and impact trade-offs. Figs. 3a and 3b show
BET characteristics under homogeneous settings with identical
parameters, deadlines, and YOLOv5 models, demonstrate sim-
ilar energy/battery conservation among compromised drones.
Figs. 3c and 3d, with different YOLOv5 models shows similar
BET against different ∆avg values. Such similarity can be
attributed to the fact that changing the YOLOv5 models only
influences the computational aspect. Figs. 3e and 3f instead
show results for drone heterogeneity with same YOLOv5

TABLE I: Simulation details for ζ set at 25% and 50%

ζ=25%, 50% Model Battery Capacity (J) ζ=37.5%
D1 Yolov5m (medium) 30960 (large) D1, D5

D2 Yolov5x (extra-large) 40920 (x-large) D2, D6

D3 Yolov5s (small) 15400 (small) D3, D7

D4 Yolov5l (large) 21380 (medium) D4, D8

models scenarios. Here, we observe longer BET characteristics
(for both ζ=25% and ζ=50%) against ∆avg when compared
to more homogeneous setting of Figs. 3a and 3b. The reason
behind the longer BET, i.e., delayed onset of attack effects,
can be attributed to drone heterogeneity in terms of their
battery capacities and energy consumption rates, as outlined
in Table I. Even if a drone over-reports energy consumption, it
might not receive less tasks than a drone with limited battery
capacity. Figs. 3g and 3h demonstrates BET characteristics
for fully heterogeneous systems. Notably, such scenarios show
some variations when compared to the previous scenarios with
limited heterogeneity. These differences arise due to model
heterogeneity, which affects task offloading. The result shows
when ζ = 25%, the server can handle it. But as more drones
are compromised, the server must monitor all drained drones,
leading to a faster BET.

Fig. 4 displays the save energy intent’s BET vs. ∆avg
characteristics for system with ζ = 37.5%. Here, total 8 drones
are simulated with 3 being compromised. We observe that for
homogeneous scenario (in Figs. 4a), BET characteristics of all
compromised drones follow similar trends as in for ζ = 25%
and ζ = 50% scenarios. However, with greater heterogeneity
in the system, as shown in Figs. 4b-d, there is a discernible
impact of the attacks which is notable on D1 and D2 as they
possess higher battery capacities. As the ∆avg increases, the
effect becomes more pronounced, leading to faster BETs.

D. Trade-offs for drain non-compromised drones intent
Fig. 5 provides the impact in terms of the number of

iterations it takes to drain non-compromised drones’ batteries
to a critically low level. For fully homogeneous scenario with
ζ=25% as shown in Fig. 5a, we see that ζ=25% is too small
to cause any malicious effect in terms of battery drainage
on non-compromised devices. When the scale of the attack
increases to ζ=50% as shown in Fig. 5b, it becomes evident
that for a specific range of ∆avg values, the attack accelerates
the drainage of non-compromised drones. However, beyond
this range, an intriguing shift occurs - the non-compromised
drones begin to benefit from the attack. This reversal transpires
because the controller excludes the compromised drones from
server collaboration in terms of workload sharing, leading to
an unexpected advantage for the non-compromised drones.

Figs. 5c and 5d illustrate the model heterogeneity scenario.
When ∆avg increases, non-compromised drones deplete their
batteries more rapidly due to increased task assignments to
them. However, beyond a certain threshold, the time to battery
drainage exhibits no further changes. This phenomenon mirrors
the observation in Figs. 5a and 5b, where, after reaching a
specific ∆avg , the effect of the attack neutralizes. In Figs. 5e-
5h, we show drain non-compromised drones intent results
for diverse drones. We observe drones with higher battery
levels take longer to drain, while those with smaller batteries
experience a faster depletion.

E. Trade-offs for jeopardize task deadlines intent
Fig. 6 demonstrates the impact of malicious attack on com-

promised drones in terms of time (i.e., number of iterations)
to deadline compromise, for different ∆avg values. In Fig. 6a,
when ζ = 25% under homogeneous conditions, the deadline
remains unaffected. However, when ζ = 50%, the server’s ca-
pacity becomes insufficientthus jeopardising the task deadlines.
Hence, if the attack scale increases, it affects the exact point
where the deadline is jeopardized. It is observed that in Fig. 6b
model heterogeneity has little impact on attack success, but
drone heterogeneity (as shown in Fig. 6c and Fig. 6d) alter such
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Fig. 3: Selfish intent attack performance vs. ∆avg across various scenarios: (a) fully homogeneous system, ζ=25%, (b) fully homogeneous system, ζ=50%,
(c) only model heterogeneity, ζ=25%, (d) only model heterogeneity, ζ=50%, (e) only drone heterogeneity, ζ=25%, (f) only drone heterogeneity, ζ=50%, (g)
fully heterogeneous system, ζ=25%, (b) fully heterogeneous system, ζ=50%
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Fig. 4: Save Energy intent attack performance vs. ∆avg for ζ=37.5% across
various scenarios: (a) fully homogeneous system, (b) only model heterogeneity,
(c) only drone heterogeneity, (d) fully heterogeneous system

behavior significantly. It accelerates the deadline compromise,
i.e., iteration 11 in comparison to iteration 26. This can be
attributed to the fact that the compromised drones, i.e., D1 and
D2 are larger and thus necessitate more cooperation from the
server when close to drainage. This causes additional workload
on the server which the server cannot sustain, leading to early
drainage of the compromised drones. We also observe that for
heterogeneous scenarios, when two drones are compromised,
the behavior is different from homogeneous scenarios. Because,
they are bigger Table I) so the controller prioritizes them. This
in turn makes the deadline compromise situation no more worse
than it already is, even for higher ∆avg .

F. Trade-offs for operational impairment intent
Fig. 7a shows the impact of operational impairment intent on

BET vs. ∆avg for fully heterogeneous system. The results show
that the attack affects between intervals 100 and 200. Beyond
this point, even significantly increasing ∆avg has no further
impact. This is because when ∆avg is large, the controller
assigns more tasks to the drone for the next iteration, this
can lead to higher energy consumption than the other non-
compromised drones, even when they are reporting less. As a
result, the action and its corresponding reaction counterbalance
each other. Fig. 7b demonstrates the impact of the attack on
the battery drainage of non-compromised drones. Initially, D3
benefits from this manipulation and battery life extends for
one more iteration because the compromised drones executing
more tasks on their own, while D4 remains unaffected due to
the system’s full heterogeneity. Fig. 7c illustrates the impact
of operational impairment intent on task deadlines. Here, we
observe that there is no effect on the deadlines, even when

∆avg increases significantly. The reason for this is that although
the compromised drones report lower battery levels, no extra
notifications are sent to the controller that their battery levels
are critically low.

G. Computing optimal ∆avg

As discussed earlier, our objective with these comprehensive
experiments is to determine the optimal value for ∆avg in
various attack scenarios. It is important to understand that
predicting the optimal value for ∆avg is not possible without
conducting experiments. This is because there are various
factors that influence the controller’s decision-making process
include the number of compromised drones, their deadline, and
physical characteristics. Additionally, there may be instances
of falsified data which can further complicate the process of
determining the optimal value for ∆avg .

Table II demonstrates the optimal value of ∆avg for all intent
in different attack scale. In Fig.3, we can observe that the
slope of the lines changes, becoming softer towards the end
as having a large value for ∆avg does not aid in reducing
the number of iterations required for BET. Instead, it increases
the risk of detection. Therefore, the ideal value for ∆avg lies
somewhere before the value gets too large with marginal effect.
Fig. 5, shows that increasing ∆avg does not continue in the
same fashion. This is because reporting huge false data will be
neutralized by forcing the non-compromised drones to consume
more energy. As the scale of the attack increases, it could have
a negative impact on some of the non-compromised ones. As
depicted in Fig. 6, ζ = 25% is not large enough to jeopardize
the deadline. However, when ζ = 50%, we observe the effect.
In a fully homogeneous system and only heterogeneous model,
the deadline decreases over time, but the rate at which it
decreases varies. In Figs. 6c and 6d, in order to impact the
deadline, ∆avg must be set in such as way that the compromised
drone’s falsified data is higher than that of the other drones.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated and proposed an intent-driven
data falsification attack model for collaborative IoT-edge en-
vironments, covering both selfish and malicious intents. Our
theoretical intuitions are evaluated and validated by ‘testbed-
in-the-loop’ simulations that revealed significant effects of data
falsification attack, with upto 50% for intents that are selfish
in nature, and upto 61% for intents that are malicious in
nature, depending on system parameters. In future, we seek to

429

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on February 04,2025 at 21:51:54 UTC from IEEE Xplore.  Restrictions apply. 



500 1500
80

81

82

83

84

85
B

at
te

ry
 D

ra
in

ag
e 

(i
n

 i
te

ra
ti

o
n

)

(a)

0 1000
80

82

84

86

88

90

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(b)

0 1000
75

80

85

90

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(c)

0 1000
80

82

84

86

88

90

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(d)

0 1000

50

100

150

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(e)

0 1000
10

20

30

40

50

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(f)

0 1000

50

100

150

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o
n
)

(g)

0 1000
10

20

30

40

50

B
at

te
ry

 D
ra

in
ag

e 
(i

n
 i

te
ra

ti
o

n
)

(h)
Fig. 5: Drain non-compromised drones intent attack performance vs. ∆avg across various scenarios: (a) fully homogeneous system, ζ=25%, (b) fully
homogeneous system, ζ=50%, (c) only model heterogeneity, ζ=25%, (d) only model heterogeneity, ζ=50%, (e) only drone heterogeneity, ζ=25%, (f) only
drone heterogeneity, ζ=50%, (g) fully heterogeneous system, ζ=25%, (b) fully heterogeneous system, ζ=50%

TABLE II: Optimum value of ∆avg in different scenarios
Attacker Intent Attack Scale (ζ) Fully homogeneous Only model heterogeneity Only drone heterogeneity Fully heterogeneous

Save energy ζ = 25% 646 750.3 859.58 759.4
ζ = 37.5% 847.9 816.83 857.7 826.1
ζ = 50% 644.5 755.85 759.95 753.5

Drain ζ = 25% 950.7 413.5 - -
ζ = 37.5% 752.3 847.8 948.46 950.26
ζ = 50% 152 554.65 - -

Jeorpardise ζ = 25% - - - -
ζ = 37.5% 950.9 750.59 948.46 1047.65
ζ = 50% 760.1 757 1354 1242.21

Operational ζ = 50% - - - 144.56
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Fig. 6: Jeopardize task deadlines intent attack performance vs. ∆avg across
various scenarios: (a) fully homogeneous system, (b) only model heterogeneity,
(c) only drone heterogeneity, (d) fully heterogeneous system
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Fig. 7: Operational impairment intent attack performance vs. ∆avg on (a)
BET, (b) battery consumption of non compromised drones, and (c) deadline

explore a detailed analytical model for the attacks to support
the experimental claims. Overall, the findings of this paper
emphasize the need to address such consequences of data
falsification attacks in collaborative IoT-edge environments in
more detail by developing robust detection techniques and
exploring resilient defense mechanisms.
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