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Abstract. HTTP/2, enhancing data transmission speed over HTTP/1.1
with features such as flow control for stream multiplexing, has seen
widespread adoption across major web servers. This has exposed numer-
ous vulnerabilities, with denial of service (DoS) particularly prominent
due to flawed flow control implementations. Identifying potential weak-
nesses in the flow control across various HTTP/2 implementations has
largely depended on manual inspection. However, the behavioral diver-
sity among implementations poses significant challenges for testing.
In this study, we propose PRETT2, a stateful fuzzing framework target-
ing denial-of-service (DoS) vulnerabilities in HTTP/2 protocols. Utiliz-
ing automated protocol reverse engineering, PRETT2 infers state ma-
chines unique to various HTTP/2 implementations. Then it executes
multiplexed fuzzing that manipulates flow control messages based on
the identified state machines. Testing on servers such as Apache and Ng-
inx revealed the capability of PRETT2 to infer multiple state machine
types and uncover security vulnerabilities, including CVE-2023-43622 by
Apache. This highlights the effectiveness of PRETT2 in identifying and
addressing critical security vulnerabilities in HTTP/2.

1 Introduction

HTTP/2 [45] is an advanced application-level protocol that supersedes HTTP/1.1
and includes additional features. According to the Cloudflare global web traffic
statistics [9], HTTP/2 traffic accounts for the majority of the HTTP protocol
series (around 65%). The primary advantage of HTTP/2 is that it supports
flow control for stream multiplexing [57, 58]. This addresses the limitations of
HTTP/1.1, such as Head-of-Line blocking [40], and enhances the protocol’s effi-
ciency and performance.

Unfortunately, the number of vulnerability reports regarding HTTP/2 imple-
mentations has steadily increased as HTTP/2 software is developed with various
security holes that may be exploited. Figure 1 illustrates the number of Common
Vulnerabilities and Exposures (CVEs) of HTTP/2 implementations since the in-
troduction of HTTP/2 in 2015. Among these vulnerabilities, 74% are classified as
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Fig. 1: The accumulated number of CVEs for HTTP/2 software per year. The
majority type of CVEs is DoS. The CVEs are selected based on their descriptions
that contain the keyword HTTP/2.

denial-of-service (DoS) attacks [30] in 20231. Multiple studies have criticized that
HTTP/2 implementations are vulnerable to DoS attacks [1, 8, 22, 24, 29, 48, 50]
due to the inappropriate use of features for flow control. We highlight the point
that the incomplete implementation of flow control features could potentially
compromise network security.

To mitigate potential HTTP/2 DoS attacks, it is imperative to conduct a
thorough analysis of HTTP/2 implementations to identify potential threats that
may exhaust system resources via flow control. To do this, security analysts
are required to have a deep understanding of complex communication features.
Although prior endeavors using manual analysis methods have discovered many
DoS vulnerabilities, they are daunting and time-consuming to apply for diverse
implementations. Even worse, an HTTP/2 implementation typically consists of
a significant amount of source code which makes it hard to analyze by hand. As
a remedy, automated testing can significantly reduce the effort.

For the automated testing of HTTP/2, a few methods [7, 41] have been
proposed. Nevertheless, it is still challenging to discover DoS vulnerabilities in
HTTP/2 due to the sophisticated properties of HTTP/2. Based on our empirical
analysis, we set three key challenges for automated testing: flow control, stateful
testing, and scalability.

1. Flow control: Flow control is a vital feature of HTTP/2, enabling stream
multiplexing. We examined that most CVE-registered vulnerabilities are at-
tributed to security flaws in the flow control. Thus, it is important to take
into account its multiplexing features to identify deficiencies.

2. Stateful testing: Stateful fuzzing is a method that enables stateful testing,
which tests server under test (SUT) with test cases based on state informa-
tion [35]. To analyze potential security flaws of protocol implementation, it
is effective to use stateful testing that uses a finer-grained state machine [7].

1 We determined the type of a CVE as DoS if its description contains related keywords
such as denial-of-service, application/server crashes, or excessive resource consump-
tion as its effect.
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Unlike HTTP/1.1, HTTP/2 is a stateful protocol, in which the acceptable
set of messages and the observable response depend on each protocol state.

3. Scalability: We examined that around 100 implementations of HTTP/2 are
available on the GitHub source code repository [23] and numerous versions
per implementation. We examined that HTTP/2 traces for the same user be-
havior can vary across servers and clients, including their versions, indicating
significant variations in the protocol’s state machines. The diversity can be
attributed to the preferences or intentions of developers [17, 21]; they may
exclude or add certain features. Hence, stateful fuzzing for HTTP/2 must
be sufficiently scalable to accommodate the diverse range of state machines.

This paper introduces PRETT2, a stateful fuzzing framework designed to
analyze HTTP/2 DoS via multiplexed fuzzing. Addressing the aforementioned
challenges, PRETT2 infers its state machines by the use of protocol reverse en-
gineering given network traces. Interacting with the server, PRETT2 utilizes
existing work [28] for the protocol reverse engineering with a modified fuzzing
algorithm that supports messages of binary protocol and checks time feedback.
Based on the inferred state machines, PRETT2 traverses state transitions and
performs multiplexed fuzzing, generating test cases with manipulated flow con-
trol messages. During fuzzing, PRETT2 measures another time feedback and
compares it to previously measured feedback to detect extended connection du-
rations, assessing potential DoS vulnerabilities.

The experimental results show that PRETT2 successfully inferred multiple
types of state machines depending on the implementations. Through the stateful
fuzzing HTTP/2 implementations, such as Apache and Nginx, PRETT2 iden-
tified three security flaws resulting in DoS, which have been reported to the
developers. One of the vulnerabilities has been assigned the CVE-ID (CVE-
2023-43622) by Apache.

This work presents the following contributions:

– We present a stateful fuzzing framework to automatically analyze HTTP/2
denial-of-service flaws. It uses a novel method to infer HTTP/2 state ma-
chines and performs fuzzing tests targeting its flow control features.

– Our experiments show that diverse state machines can be inferred for the
same user behavior depending on the implementations. Notably, we demon-
strate that the flow control of a state machine may be different from others.

– We discovered and reported multiple security flaws in the flow control of
popular HTTP/2 implementations using stateful fuzzing by PRETT2.

2 Background

2.1 HTTP/2

HTTP (Hypertext Transfer Protocol) is a fundamental protocol used to re-
quest data from web servers. The first version of HTTP for common usage was
HTTP/1 [10], followed by HTTP/1.1 [20]. One of the significant improvements in
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Table 1: Properties of HTTP/1.1 and HTTP/2
HTTP/1.1 HTTP/2

Message format plain text binary frames
Connections pipelining stream multiplexing
Statefulness stateless stateful
Transport layer TCP TCP

HTTP/1.1 is its ability to handle parallelized requests through pipelining. How-
ever, HTTP/1.1 still had a limitation known as head-of-line blocking (HoLB) [40]
which causes delays in simultaneous data transmission and cannot cope with
huge network traffic. To be specific, a response to a request has to wait until the
response to the previous request is processed when requests are in parallel. To
address this issue, a new protocol called SPDY was developed, forming the basis
for HTTP/2 [15,43].

Table 1 outlines the distinctions between HTTP/2 and HTTP/1.1. A key dif-
ference is the shift of HTTP/2 from plain text to binary framing for HTTP head-
ers and messages, optimizing communication data efficiency. Unlike HTTP/1.1’s
reliance on multiple TCP connections, HTTP/2 employs stream multiplexing
within a single TCP connection to enable parallel requests and responses. For in-
stance, HTTP/2 allows for setting stream priorities and maintaining idle streams
with the PRIORITY frame [57,58]. Additionally, HTTP/2 introduces statefulness
with enhanced functionalities like flow control, in contrast HTTP/1.1 has a state-
less nature [45]. Such property makes the sequences of messages with appropriate
frames important. The list of all HTTP/2 frames and the detailed information
is described in Table 2.

Table 2: Types of HTTP/2 communication frames
Frame type Description

SETTINGS Configures flow control parameters for the communication in a stream.
WINDOW_UPDATE Sets or updates a stream’s data capacity for flow control.
DATA Transmits variable-length octet sequences in a stream.
HEADERS Opens a stream for data request or response.
PUSH_PROMISE Allows multiple responses to a single request from the client.
PRIORITY Specify a stream to be processed first by designating the priority.
RST_STREAM Immediately terminates a stream with an error code.
GOAWAY Terminates the connection using a priority error code over other frames.
CONTINUATION Continues a prior HEADERS frame’s field block sequence.
PING Assesses idle connection functionality by measuring round-trip time.

Flow Control. Flow control in HTTP/2 facilitates the multiplexing of commu-
nications within a single connection by preventing the interference of streams
between a server and a client. It leverages the SETTINGS and WINDOW_UPDATE
frames to manage resource allocation through DATA frames. This involves con-
figuring the receiver’s buffering capacity, known as the flow control window, and
allowing each sender to maintain distinct flow control windows for each stream
and the connection as a whole [6]. Adjustments to the flow control window, such
as setting initial sizes via SETTINGS frame and modifying current sizes through
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Listing 1: HTTP/2 specification: Denial-of-Service Considerations
... The SETTINGS frame can be abused to cause a peer to expend

additional processing time. This might be done by pointlessly
changing SETTINGS parameters, setting
multiple undefined parameters, or changing the same setting
multiple times in the same frame. WINDOW_UPDATE or PRIORITY frames
can be abused to cause an unnecessary waste of resources. ...

WINDOW_UPDATE frame, enable communication parties to signal their readiness to
receive data [1].

2.2 Protocol Reverse Engineering

Protocol reverse engineering discerns the structure and sequence of protocol
messages, resulting in a state machine that specifies the anticipated interactions
within each state, aiding analysts in protocol behavior analysis [32]. Its key
advantage lies in enabling fuzzers to conduct stateful testing by generating test
cases that explore the complex state dynamics of an implementation.

Protocol reverse engineering can be done by hand, but it requires huge la-
bor. Unfortunately, protocol state machines are often not well-defined in typical
protocol specifications, according to numerous works of literature [26,33,36,37].
Specifically, many protocol specifications are written in prose [26, 36] or mini-
mally documented [32]. Further, multiple state machines may be inferred for the
same protocol depending on implementation. Such diversity requires security
experts to spend extra effort. As a remedy, automated protocol reverse engi-
neering is effective in coping with the diverse state machines. Prior work has
demonstrated that protocols can successfully be reverse-engineered in an auto-
mated way [11, 55], which is also possible to infer multiple state machines per
implementation [28].

3 Security Analysis for HTTP/2

3.1 Prior Works

Manual Analysis. Prior works on the security analysis of HTTP/2 relied heavily
on manual analysis [8, 29, 48, 50]. However, one limitation of such manual anal-
ysis is scalability. This is because HTTP/2 has multiple implementations with
different features based on the developer’s interpretations [25]. For instance, one
paragraph in the Denial-of-Service Considerations section of the HTTP/2
specification (shown in Listing 1) does not specify the exact parameters and
values (or their ranges) that correspond to the multiple numbers. The obscure
descriptions may lead to using subjective mitigations.

Automated Analysis. As a remedy to manual analysis, proposals for automated
analysis have emerged as effective means for identifying HTTP/2 vulnerabilities.
However, despite these advances, they have yet to surmount all the challenges
previously mentioned. The detailed description of each approach is as follows:
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Table 3: Challenges addressed by automated analysis
Flow Control Stateful Testing Scalability

http2fuzz Yes No No
SGFUZZ No Yes Yes
Proposed Yes Yes Yes

1. http2fuzz [41] is an open-source project that conducts fuzzing on HTTP/2
messages. It uses pre-defined message formats to generate test cases and sup-
ports HTTP/2 messages that include flow control frames such as SETTINGS
and WINDOW_UPDATE frames. This addresses the challenge of flow control.
However, due to a lack of insight into the state machines implemented in
different implementations, it is unable to tackle the challenges of stateful
testing and scalability.

2. SGFUZZ [7] is the first to use stateful fuzzing research for HTTP/2. It is
effective at addressing challenge stateful testing by automatically extract-
ing the state machine of target implementation (H2O). SGFUZZ uses static
analysis on source code which is the general approach that can be applied
to diverse implementations and addresses challenge scalability. However, the
state machine extracted by SGFUZZ does not include HTTP/2 messages
for flow control. It only contains state transitions for data requests and re-
sponses, which makes it unable to address challenge flow control.

The challenges addressed by each method and our proposal have been sum-
marized in Table 3.

3.2 Motivating Example

As the main inspiration for our study, we describe an example of an HTTP/2
DoS vulnerability, which is publically reported as CVE-2016-1546 [16]. The vul-
nerability is triggered by an HTTP/2 slow rate attack [48] that exploits a flaw
in the flow control implementation of the Apache HTTP/2 server. The sequence
diagram demonstrating the HTTP/2 slow-rate attack is shown in Figure 2.

Slow-rate Attack. A slow-rate attack [12] is a subcategory of DoS attacks, which
is mainly known for its stealthier nature. This attack is one of the well-known
HTTP/2 vulnerabilities, which is pointed out by various researches [2,47–49,59].
Unlike large-scale DDoS attacks that can easily be noticed, a slow-rate attack

3-way
handshake

Stream 0

Connection preface

SETTINGS
INITIAL_WINDOW_SIZE : 0

Stream 0

SETTINGS
Flags: ACK

HEADERS
Method: GET

Path: /

HEADERS
Status: 200 (OK)

Connection pool 
exhausted

Delayed 
response

RST_STREAM
Stream ID: 1

Stream 1

Stream 1

Client

Server

Stream 1

① ② ③ ④ ⑤

Fig. 2: Sequence diagram of HTTP/2 slow-rate attack
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is hard to detect since it requires a small bandwidth and is similar to normal
traffic. This attack proceeds according to the following steps:

1 A TLS connection is established through a 3-way handshake, after which the
client sends a connection preface on stream ID 0.

2 Then it sends a SETTINGS frame that is deliberately crafted with an initial
window size set to zero.

3 Following the receipt of another SETTINGS frame that includes the ACK flag,
the attacker sends multiple GET requests using a HEADERS frame on a different
stream, such as stream ID 1.

4 This leads to a communication deadlock, where the server is ready to send
data but is artificially constrained due to the window size being set to zero,
preventing any data transmission.

5 Consequently, the server keeps these connections open for an extended pe-
riod, exhausting the connection pool until it terminates the stream with
RST_STREAM frames, which could last longer than any configured timeout.

Proposed approach. Our analysis of HTTP/2 DoS vulnerabilities emphasizes
the importance of addressing flow control, stateful interactions, and scalability.
Assuming an attacker can interact with the target software in parallel, they
can exploit complexities in flow control with stateful messages that can strain
the server. Vulnerabilities may vary across different server types and versions,
necessitating a testing approach that is both flexible and scalable. We adopt a
black box approach that realistically simulates attacks using real-world network
services. The limitations of white box analysis, as demonstrated by SGFuzz [7],
reinforce the strengths of the black box approach, which interactively captures
complex state transitions including flow control. Our method not only overcomes
the limitations of static analysis but also enhances the understanding of HTTP/2
vulnerabilities under practical attack scenarios.

4 Proposed Framework for HTTP/2 Stateful Fuzzing

Request Response

Start Trace Extraction
State Machine

Inference
Stateful Fuzzing Finish

Client SUT

HTTP/2 session

state machinetrace

Fig. 3: PRETT2 framework

This section describes PRETT2, a stateful fuzzing framework designed for
the automated detection of DoS vulnerabilities within diverse HTTP/2 imple-
mentations. Figure 3 illustrates the comprehensive methodology employed by
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Session started
(after 3-way handshake)

Session ended
(Received GOAWAY
or RST_STREAM)

HTTP/2 communication 
(replaying captured messages)

Connection duration

(a) Connection duration of normal HTTP/2 communication

Session started
(after 3-way handshake)

Session ended
(Received GOAWAY
or RST_STREAM)

Moving to target state
(sending transition messages)

Processing fuzzing messages

Fuzzing started

Δ

(b) Connection duration of HTTP/2 communication under fuzzing

Fig. 4: Connection duration for time feedback

PRETT2, which is designed to effectively identify and exploit vulnerabilities in
HTTP/2 implementations through a three-phase process: trace extraction, state
machine inference, and stateful fuzzing.

Improvements over PRETT. PRETT2 significantly advances beyond its prede-
cessor, by tailoring its algorithm to address the specific challenges posed by the
traits of HTTP/2. The following are several key distinctions between them:

– Message complexity: PRETT2 reflects both the binary frames and the
order of messages in multiple streams. This differs from creating test cases
by merging human-readable keywords and using a single connection.

– Data sources: PRETT2 analyzes protocol behavior through network traces
alone, capturing both request and response times, without binary analysis.

– Connection duration: PRETT2 records the normal connection duration
during state machine inference. It captures the timeframe from the start to
the end of an HTTP/2 session (as shown in Figure 4a) and uses this for its
subsequent stateful fuzzing.

4.1 Trace Extraction

PRETT2 employs network traces recorded between a server under test (SUT)
and a client for state machine inference and stateful fuzzing, using these traces
as templates to generate fuzzing messages. By generating HTTP/2 traffic, the
inherent feature of stream multiplexing is recorded, serving as a basis for the
state machine inference that incorporates flow control and for the multiplexed
fuzzing initiatives.

To efficiently capture these traces, an automated script can be utilized, com-
bining the use of packet capture software like Wireshark with tshark command-
line interface and a browser command for initiating traffic. An example of an
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automated capture script is shown in Listing 2. This script encapsulates the
process of initiating the capture of HTTP/2 traffic using tshark, along with the
concurrent initiation of a Chrome session directed to a specified HTTP/2-enabled
server.

Listing 2: An example script for automated HTTP/2 traffic capture
$ tshark -i <interface> -Y "http2" -w captured_traffic.pcap &
chrome --headless --disable-gpu --dump-dom https://<server_ip>

Captured traces are encrypted using the TLS protocol version 1.2 or higher
for security reasons [45], limiting access to message details and complicating
frame parameter manipulation for fuzzing. Thus, they need to be decrypted
using a keylog file [44].

4.2 State Machine Inference

Given network traces, PRETT2 uses an interactive method of protocol reverse
engineering that uses a request-and-response approach to infer state machines.
PRETT2 utilizes the state machine inference algorithm presented in a previ-
ous study, PRETT [28], by repeating both state machine expansion and state
machine minimization processes for each level based on a tree model.

State Machine Expansion. PRETT2 constructs a state machine based on a tree
structure, in which the root node is considered an initial state. Assuming the
maximum level of the tree is L, PRETT2 expands the tree to have as many
nodes in the next level L + 1 as possible by sending candidate messages on
every leaf node. The candidate messages in the traces are presented as request
messages without modification to their parameters. This prevents early rejection
of malformed messages by the SUT. PRETT2 then checks the response messages
with their response time and regards all the nodes expanded from the leaves as
candidate nodes.

State Machine Minimization. After the state machine expansion is complete,
PRETT2 eliminates duplicate candidate nodes in level L + 1 of the tree. To
remove the duplicated nodes, PRETT2 conducts the compatibility test presented
in the previous study [28]. The compatibility test finds redundant candidate
nodes by determining either the compatibility or the incompatibility between
nodes. In PRETT2, each candidate node is tested with other valid nodes based
on a set of response time, request message, and response message. The valid
nodes are the nodes proven to be states after the same process is conducted in
the previous level.

End Condition. After all the candidate nodes are tested for compatibility with
the other valid nodes, PRETT2 regards the candidate nodes that are proved to
be unique (i.e., incompatible with any of the valid nodes) as a set of valid states
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found in the level L + 1. Each valid state is used as a leaf node for the state
expansion of the next level. In particular, when no valid state is present as a
result of state minimization in the level, no state expansion and minimization
process needs to be performed and a minimized state machine that is composed
of only valid states is returned.

4.3 Stateful Fuzzing

Given the state machine inferred in the previous step, PRETT2 generates test
cases based on the request messages of traces. Specifically, PRETT2 mutates
the variable fields of the HTTP/2 frames that exist in a message, consider-
ing the HTTP/2 stream multiplexing feature by simulating multiple interleaved
streams in a single connection. Numerous test cases are transmitted to the SUT
by traversing every transition in the state machine. Then PRETT2 takes time
feedback from SUT in return, which is a new connection duration ∆ (as shown
in Figure 4b). To determine the potential exhaustion of the connection pool,
PRETT2 compares the connection duration ∆ to that of normal HTTP/2 com-
munication recorded in the previous step.

5 Evaluation

This section presents the experimental outcomes of protocol reverse engineer-
ing and stateful fuzzing carried out with PRETT2. We utilized network traces
obtained from multiple web servers and browsers to ensure diversity, taking
into account their popularity2. PRETT2 leveraged these traces to conduct state
machine inference and stateful fuzzing on the web servers. To ensure the re-
producibility of our results, we excluded commercial implementations such as
Cloudflare Server. For the reproducibility of our work, we published the source
code for both the state machine inference and stateful fuzzing to the public 3.

5.1 Experimental Setup

We ran a series of experiments involving protocol reverse engineering and state-
ful fuzzing on VMware virtual machines. Each virtual machine was configured
identically, equipped with an Intel i5 CPU that has 12 logical cores running
at 2.90GHz, Ubuntu 18.04.6 LTS, 40GB of SSD, and 4GB of system memory.
We captured network traces between a server and a client by configuring each
server with the default settings for HTTP/2 and requesting an index page and
a favicon from each client. Every server was set up so that resources for the
index page were available, but those for the favicon were unavailable. Different
HTTP/2 implementations were installed on each virtual machine to examine
their behavior under identical conditions.
2 For the usage share of HTTP/2 web servers and browsers, we referred to the statistics

by W3Techs [52] and W3Schools [51], respectively.
3 https://github.com/choonginlee/PRETT2
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Table 4: Targets of HTTP/2 implementation
Servers

Target Release Announced

v1 1.14.0 06-Apr-18

Nginx v2 1.21.6 25-Jan-22

latest 1.23.4 28-Mar-23

v1 2.4.29 23-Oct-17

Apache v2 2.4.33 28-Mar-18

latest 2.4.56 07-Mar-23

v1 2.2.4 15-Dec-17

H2O v2 2.3.0-beta1 02-Jun-18

latest 2.3.0-beta2 14-Aug-19

Browsers

Target Release Announced

v1 62 31-Aug-17

Chromium v2 67 29-May-18

latest 111 01-Mar-23

v1 56 28-Sep-17

Firefox v2 60 09-May-18

latest 111 14-Mar-23

v1 48 27-Sep-17

Opera v2 53 10-May-18

latest 97 22-Mar-23

Target Selection. We assessed three HTTP/2 web servers - Nginx, Apache, and
H2O. Nginx [19] is the most widely used web server for HTTP/2, accounting
for approximately 34% of usage on millions of websites. Apache, also known as
httpd [5], is the second most widely used, representing around 30% of usage.
H2O [18] is used by fewer websites, but it is commonly employed by high-traffic
sites. In contrast, we evaluated three HTTP/2 web browsers - Chromium [42],
Firefox [31], and Opera [34]. We chose to test the versatility of state machine
inference by arbitrarily selecting outdated versions (v1, v2) as well as the latest
version 4 of each implementation. We excluded extremely outdated versions that
are not supported by the operating system. The selected HTTP/2 implementa-
tions are summarized in Table 4.

Control Variables. To minimize external factors that could affect the experi-
ment’s outcome, we carefully configured the environment. First, we selected an
operating system that supports all the various versions of multiple HTTP/2 im-
plementations without switching kernels. Second, we experimented with a closed
local area network (LAN) to prevent any potential interference from other net-
work services. Third, we configured the HTTP/2 web servers to support only
IPv4 and not to prefetch assets requested by a client. Finally, we ensured that
the resources for the index page of each server were identical.

5.2 State Machine Inference

During our experiments, we recorded a total of 81 traces by combining nine
servers and nine web browsers. Using PRETT2, we were able to successfully infer
multiple state machines that effectively demonstrate the flow control process
depending on three variables: server type, client type, and server version. We
have demonstrated the representative state machines for Nginx and H2O in
Figure 5 and Figure 6. For the Apache server, PRETT2 inferred different state
4 We determined the latest version of each implementation based on the official release

at the time of the evaluation in March 2023.
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machines for each server-browser combination. The state machines for Apache
are more sophisticated than those for Nginx and H2O. Due to the page limitation,
we have provided an example of an Apache state machine in the Appendix.

Results. We represent state machines from a client point of view in a directional
graph. The edges specify a pair of sent-received messages (split by a slash) with
one or more HTTP/2 frames, while the nodes specify the state. The dots(...) in
the received messages indicate that no message has been received from a server.
All states except the END state are subject to change to the END state after
receiving a GOAWAY frame, which occurs when it reaches the pre-configured time-
out. Numbers in square brackets indicate each stream ID on which its message is
sent, and a bar(|) is used to differentiate multiple frames of a message in separate
streams. To make it more readable, we shortened the name of each frame into
two alphabetical letters 5.

Analysis. Figure 5 illustrates a state machine that was inferred for Nginx
and H2O servers. This was done using traces that recorded communication
with Chromium and Opera browsers. On every state except the END state,
both the client and server could configure the window size using SETTINGS and
WINDOW_UPDATE frames. States DATA1 and DATA2 represent the states in which
the client received and responded to a request for the first data (i.e., the index
page) and second data (i.e., the favicon), respectively. It is noteworthy that data
requests using different types of HEADER frames make different transitions on
each state. For instance, servers responded quickly with a GOAWAY frame if the
second data was requested on the INIT state. However, they responded with
both HEADER and DATA frames when requested the same request on the DATA
state. Interestingly, we observed slightly different responses to the request for
the second data in state DATA1 when using the v1 version of H2O. This was
due to the different sizes of header block fragments, which varied depending on
the versions.

Figure 6 shows three different state machines inferred for either H2O or
Nginx. This was done using traces that recorded communication with Firefox
browsers. These state machines differ from the one shown in Figure 5 due to the
message difference in the traces. Three significant differences compared to other
5 ST: SETTINGS, WU: WINDOW_UPDATE, HD: HEADERS, DA: DATA, GO: GOAWAY, PR: PRIORITY,

and RS: RST_STREAM

INIT

END

DATA1

DATA2

H2O (L) – CR (L) / CR (M) / CR (O)

H2O (L) – OP (L) / OP (M) / OP (O)

H2O (M) – CR (L) / CR (M) / CR (O)

H2O (M) – OP (L) / OP (M) / OP (O)

NG (L) – CR (L) / CR (M) / CR (O)

NG (L) – OP (L) / OP (M) / OP (O)

NG (M) – CR (L) / CR (M) / CR (O)

NG (M) – OP (L) / OP (M) / OP (O)

ST-WU[0] / ST[0]
ST[0] / …

HD[3] / GO[0]

* All states except Disconnected are subject to be 
changed to Disconnected receiving GOAWAY [0] 

when timeout.

ST[0]-WU[0] / ST[0]
ST[0] / … 

HD[1] / HD-DA[1]

HD[1] / GO[0]

HD[1] / GO[0]
HD[3] / GO[0]

ST-WU[0] / ST[0]
ST[0] / …

Due to the differences of Header Block Fragment,
there could be another state – but it is almost the same!

I don’t know what makes it different, but only thing that I 
know is the difference between quick request and slow request

HD[3] / HD-DA[3]
HD[3] / HD-DA[3]*

H2O (O) – CR (L) / CR (M) / CR (O)

H2O (O) – OP (L) / OP (M) / OP (O)

Fig. 5: State machine of Nginx and H2O (Chromium and Opera traces)
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INIT

END

CONFIGURED

DATA1

H2O (L) – FF (L) / FF (M) / FF (O)

H2O (M) – FF (L) / FF (M) / FF (O)

H2O (O) – FF (L) / FF (M) / FF (O)

ST[0] / …
GO[0] / …

HD-WU[17] / GO[0]

* All states except Disconnected are subject to be 
changed to Disconnected receiving GOAWAY [0] 

when timeout.

ST-WU[0] | PR[(6)] / ST[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[15] / HD-DA[15]

Firefox actively reacts to GOAWAY by sending back 
GOAWAY to the server.

DATA1
(NO CONFIG)

HD-WU[15] / HD-RS[15]

ST[0] / …
GO[0] / …

ST-WU[0] | PR[(6)] / ST[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / … 

DATA2

HD-WU[17] / HD-RS[17]

HD-WU[17] / HD-DA[17]

HD-WU[17] / GO[0]

HD-WU[15] / GO[0]

HD-WU[15] / GO[0]
HD-WU[17] / GO[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[15] / GO[0]

(a) State machine of H2O (Firefox trace)

INIT

END

DATA1

CONFIG
UPDATED

NG (L) – FF (L) / FF (M) / FF (O)

NG (M) – FF (L) / FF (M) / FF (O)

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[17] / GO[0]

* All states except Disconnected are subject to be 
changed to Disconnected receiving GOAWAY [0] 

when timeout.

HD-WU[15] / HD-DA[15]

ST[0] / …
GO[0] / …

ST-WU[0] | PR[(6)] / ST[0]

Firefox actively reacts to GOAWAY by sending back 
GOAWAY to the server.

DATA2HD-WU[17] / HD-DA[17]

HD-WU[15] / GO[0]

HD-WU[15] / GO[0]

HD-WU[15] / GO[0]
HD-WU[17] / GO[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[17] / HD-DA[17]

(b) State machine of Nginx (version v2 and latest, Firefox trace)

NG (O) – FF (L) / FF (M) / FF (O) * All states except Disconnected are subject to be 
changed to Disconnected receiving GOAWAY [0] 

when timeout.

Firefox actively reacts to GOAWAY by sending back 
GOAWAY to the server.

INIT

END

DATA1

DATA2

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[17] / GO[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[15] / HD-DA[15]

HD-WU[15] / GO[0]

HD-WU[15] / GO[0]
HD-WU[17] / GO[0]

ST-WU[0] | PR[(6)] / ST[0]
ST[0] / …
GO[0] / …

HD-WU[17] / HD-DA[17]

(c) State machine of Nginx (version v1, Firefox trace)

Fig. 6: State machines of H2O and Nginx (Firefox traces)

browsers are as follows. (1) Firefox reserved idle streams [54] for stream prior-
itization using PRIORITY frames6. (2) Firefox requested data using two frames,
such as HEADER and WINDOW_UPDATE, in the same message. (3) Firefox sent a
GOAWAY frame back to the server when it had received a GOAWAY frame.

H2O and Nginx worked differently from each other for the communication
with the Firefox browser. For instance, Figure 6a shows that H2O had a CON-

6 The PRIORITY frame reserved a total of six streams with stream IDs 3, 5, 7, 9, 11,
and 13. This short frame is shown as PR[(6)] in the state machine. As a result, the
first and second data requests were on stream IDs 15 and 17, respectively.
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FIGURED state indicating that a server was requested for the configuration
settings via SETTINGS, WINDOW_UPDATE, and PRIORITY frames for the first time.
Additionally, H2O sent an RST_STREAM frame whenever a client requested data
without such configuration settings. These differences were not seen in the case
of Nginx (Figure 6b). We could observe that the v1 version of H2O also worked
differently (Figure 6c) compared to other versions (Figure 6b.) The state ma-
chine was the same as that of communication with Chromium and Opera, except
for several additional messages originating from Firefox messages.

Comparison to SGFuzz. To our knowledge, SGFuzz [7] is the only work that
has demonstrated the ability to perform state machine inference for fuzzing.
They presented a compact state machine for H2O using a state transition tree
(STT), which represents the lifecycle of an HTTP/2 stream. To generate the
state transition tree, SGFuzz refers to state variables that are assigned and com-
pared to named constants using static resources of the HTTP/2 implementation.
The state machine is inferred effectively because it contains specific information
on the states that detail those in the HTTP/2 specification.

However, they did not successfully demonstrate flow control and multiplexed
streams in practice: the state machines lack any information on configuration
settings. On the other hand, PRETT2 is capable of inferring various state ma-
chines that demonstrate flow control messages on multiple streams. Specifically,
the state machines contain the process of configuration settings via SETTINGS
or WINDOW_UPDATE, which is done on stream ID 0, whereas requests for data are
done on different stream IDs.

5.3 Security Analysis

As a result of fuzzing HTTP/2 servers using inferred state machines, PRETT2
could discover three Denial-of-Service attacks that exploit flow control flaws
in both Apache HTTP servers (versions 2.4.46 and 2.4.58) and Nginx (version
1.25.3). The attacks were successful by sending multiple messages that exceeded
the limit of the connection pool. We reported all the flaws to the developers and
found that the attacks could be exploited when the server was configured by
default without any external mitigation options.

Case Study. As a case study, we explain a vulnerability that we discovered
via PRETT2. The vulnerability, known as CVE-2023-43622, was triggered by
an implementation flaw in flow control for Apache httpd 2.4.58. To discover
this vulnerability, we used PRETT2 to craft parameters of HTTP/2 frames
with special values by fuzzing and assessing each state. Specifically, we sent
a SETTINGS frame with a 0 SETTINGS_INITIAL_WINDOW_SIZE value and sent
hundreds of data requests by traversing every possible state transition based on
the state machine. This action fooled the server into believing that the client
was not able to receive data and led to a slow-rate attack.
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The attack was successful when we used a state machine based on commu-
nication traces between the server and the Chromium browser. However, we
could not discover the vulnerability using the same parameters based on the
communication traces with the Firefox browser. This is because Firefox sends
WINDOW_UPDATE frames immediately after connection establishment, which con-
vinces the web server that the client can receive the data. Instead, we were
able to successfully exploit the vulnerability by manipulating the parameter
window_size_increment of a WINDOW_UPDATE frame using fuzzed messages.

6 Related Work

HTTP/2 DoS. Various approaches have analyzed the security vulnerabilities
of HTTP/2 DoS using manual analysis. Targeting the extended features of
HTTP/2, H2DoS [29] observed that a malformed sequence of crafted frames can
cause DoS. Imperva [24] tested the features of HTTP/2 and found several attack
vectors for DoS. Also, HTTP/2 Distributed DoS (DDoS) attacks are presented
by various literature. Adi et al. [3] presented an HTTP/2 DDoS attack model,
where the server resources are exhausted with the large volume, but legitimate
flash crowd traffic. Adi et al. [1] further discussed how to camouflage offending
traffic, such as the traffic of the attack [3]. HTTP/2 Cannon [8] analyzed the
HTTP/1.1 legacy functionalities of HTTP/2 and explored the DDoS risk posed
by the upgraded functionality of the HTTP/2 protocol. HTTP/2 Tsunami [50]
observed that an amplification DDoS attack is possible in a proxy environment
through HPACK. The effects of a simple asymmetric DDoS attack on HTTP/1.1
and HTTP/2 servers are compared in another paper [38]. Although HTTP/2 per-
forms better due to its performance improvements, it is found to be vulnerable
to a new attack vector called the multiplexed asymmetric attack.

Slow-rate Attack. Security researchers focused on the slow-rate attack as a com-
mon attack for HTTP/2 DoS. Adi et al. [2] described how to launch several slow-
rate attacks and investigated its effect. Tripathi et al. [48] proposed a feature-
based statistical anomaly detection mechanism for the five types of attacks that
they discovered, three of which are structurally comparable to known HTTP/1.1
attacks. Zhang et al. [59] also presented another type of slow-rate attack called
the zAttack.

Protocol Reverse Engineering. Three types of protocol reverse engineering meth-
ods have been proposed for the inference of protocol communication. First, the
static method clustered network traces to infer message formats and protocol
states [4,39,46,53]. For example, ReverX [4] generated a state machine through
the process of merging and simplifying messages. Veritas [53] used statistical
analysis by defining a probabilistic protocol state machine (P-PSM) which is
a probabilistic generalization of the protocol state machine. Second, the dy-
namic method analyzed execution traces from implementations to understand
communication rules and state machines [14, 56]. Xiao et al. [56] inferred an
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accurate state machine using the trial-and-error learning method for messages.
Prospex [14] clustered protocol message sequences and analyzed their correla-
tions. Lastly, the interactive method used a request-and-response approach using
network traces to determine the correctness of messages and their sequences to
infer a state machine [13, 27, 60]. Cho et al. [13] and Zhang et al. [60] identified
potential data message fields by sending and receiving messages as query strings.

HTTP/2 Fuzzing. Compared to the variety of methods for manual analysis, only
a few automated testing methods (i.e., fuzzing) were presented. Http2fuzz [41] is
the first fuzzer for testing HTTP/2 vulnerabilities presented by the Yahoo Pen-
test Team. SGFuzz [7] presented an advanced fuzzing framework using stateful
information. As discussed earlier, however, they are limited to addressing chal-
lenges for discovering HTTP/2 DoS due to the insufficient testing of flow control.

7 Concluding Remarks

The widespread adoption of HTTP/2 services by web servers has led to a steady
increase in DoS vulnerabilities due to implementation flaws in HTTP/2 flow con-
trol. As a remedy, we proposed PRETT2, a stateful fuzzing framework designed
to automatically analyze HTTP/2 DoS flaws. PRETT2 infers state machines
using a novel method for automated protocol reverse engineering, successfully
deriving various types depending on server type, client type, and server version.
Utilizing these state machines, PRETT2 conducted stateful fuzzing on multi-
ple HTTP/2 servers and discovered several DoS attacks exploiting flow control
flaws. Despite our promising results, PRETT2 has limitations: the heavy depen-
dence on network traces for the state machine and its focus solely on HTTP/2
flow control flaws. For future work, we aim to extend our research to include
HTTP/3 testing, adapting our framework to tackle the evolving challenges in
newer protocol versions. We believe that our research can significantly contribute
to network security by mitigating DoS attacks on HTTP protocols as a proactive
analysis method.
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Appendix

Fig. 7: The illustration of the state machine for Apache’s latest version, inferred
using Chromium traces. While the detailed representation is optimized for a
broad overview, it highlights the intricate complexity and extensive capabilities
of Apache in contrast to the more simplified state machines of H2O and Nginx.
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